期刊文献+

智能复合材料的化学-力学完全耦合理论及有限元计算 被引量:4

Theory and FEM Calculation for Full Chemo-Mechanical Coupling Behavior of Smart Material
下载PDF
导出
摘要 许多智能复合材料例如生物组织和聚合物胶体,都表现出多场耦合行为。目前化学-力学耦合理论属于一个比较新的领域,还不成熟。本文主要研究化学一力学耦合行为,并在ABAQUS软件中进行了数值模拟计算。应用力学平衡方程、离子扩散方程和包含力学-化学耦合因素的的本构关系椎导出了力学-化学耦合的等效积分形式,建立力学-化学耦合的有限元方程。在ABAQUS软件中开发用户单元子程序,进行数值模拟。计算结果表明:力学与化学存在着相互耦合作用,浓度变化能引起固体的变形,同样力学作用也能引起浓度重分布:由于耦合作用,固体的有效性能与扩散性质都发生了改变:力学-化学耦合作用过程实际是机械能与化学能之间能量转换过程;最终,研究体中械能与化学能达到相互平衡状态,且质量守恒。本文的理论和方法可应用于模拟生物组织、粘土等材料的力学-化学耦合行为。 Many smart materials, such as biology tissues and polymer gel, exhibit multi - field coupling behavior. Chemo-mechanical coupling is a relatively new problem whose theory has not been well established yet. Chemo-mechanical coupling behavior was investigated and simulated by using finite element method. The equivalent integral formula for coupling system of equilibrium, ionicd ffusion equations were obtained. User elernent subroutines were developed in ABAQUS for caloulation. It shows that the mcchanical and chemioal ficlds interact with each other, and the deformation of solid skeleton is coused by the concentration variation. Both of the effective benhaviors of solid skeleton and mass diffnsion are changed beacuse of the coupling effect. Actually, the chemo- mechanical coupling behavior is a form of energy transformation between mechanical energy and chemical energy Finally, the energy in polymer will be balanced, and mass conservation is also satisfied in the procedure. The present chemo - mechanical thory and numerical method can be applied to simulate the chemo-mechanical coupling behavior of biology tissues, clays and so on.
作者 林銮 杨庆生
出处 《力学季刊》 CSCD 北大核心 2008年第1期8-14,共7页 Chinese Quarterly of Mechanics
基金 国家自然科学基金(10272006 30470439) 北京市中青年骨干教师培养计划专项资助
关键词 力学-化学耦合 质量扩散 等积分形式 有效性能 cheme-mechanical coupling mass-diffusion equivalent integral form effective behavior
  • 相关文献

参考文献13

  • 1Garard M. Chaubey A, Malhotra B D. Application of conducting polymers to biosensors[J]. Biosensor & Bioelectronics[J], 2002, 17 (5) :345 - 359.
  • 2Lai W M, Hou J S, Mow V C A. A triphasic theory for the swelling and deformation behaviors of articular cartilage [J]. ASME J Biomech Eng, 1991,113:245 - 258.
  • 3Ma CM, Hueckel T. Effects of interphase mass transferin heated clays:a mixture theory[J]. Int J Eng Sci, 1992,30(11):1567- 1582.
  • 4Hueckel T, Water-mineral interaction in hygro-mechanics of clays exposed to environmental loads: a mixture approach [J]. Can Geotech J,1992a, 29:1071 - 1086.
  • 5Hueckel T. On effective stress concepts and deformation in clays subjected to environmental loads [J]. Can Geotech J, 1992b,29: 1120 - 1125.
  • 6Snijders H, Huyghe J M, Janssen J D. Triphasic finite element model for swelling poropus media [J]. Num Meth Fluids, 1995,20: 1039 - 1046.
  • 7Simoes L B, Fermando M F. Articular cartilage wiht intra - and extrafibrillar waters., a chemo - mechanical model[J]. Mechanics of Materials, 2004,36:515 - 541.
  • 8Simoes L B, Gajo A, Fernando M F. A note on the dissipation due to generaized diffusion with electro - chemo- mechanical couplings in heteroionec clays [J]. European Journal of Mechanics A/Solids ,2004,23:763 - 782.
  • 9Yang Q S. A variational principle and MFE formula for thermo- electro- chemo - mechanical behavior of conducting olymer [J]. Proc Sina - Singapore Seminar for Computaional Mechanics, Feb. 2 - 7,2004,J Beijing University of Technology, 2004,30 supp, 125 - 132.
  • 10Yang Q S, Cui C Q, Lu X Z. A general procedure for modeling physicochemical coupling behavior of advanced materials-Part I: theory [J]. MMMS-Multidisciplinary Modeling in Materials and Structures, 2005,1(3) :223- 230.

同被引文献101

  • 1WANG PengFei1, ZHOU JinXiong1, LI MeiE2, XU Feng1,3 & LU TianJian1 1 Biomedical Engineering and Biomechanics Center, SV Laboratory, Xi’an Jiaotong University, Xi’an 710049, China,2 School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China,3 HST Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, 510660, USA.Nonlinear dynamics of self-oscillating polymer gels[J].Science China(Technological Sciences),2010,53(7):1862-1868. 被引量:3
  • 2刘馨燕,严波,刘海京.关节软骨两相多孔介质非线性模型的有限元方法[J].应用力学学报,2004,21(2):61-65. 被引量:4
  • 3尹鹿,袁振,倪勇,李华,何陵辉.数值模拟离子强度敏感水凝胶的多场特性[J].力学学报,2005,37(3):363-367. 被引量:4
  • 4X. Q. He,C. Qu,Q. H. Qin.A theoretical model for surface bone remodeling under electromagnetic loads[J]. Archive of Applied Mechanics . 2008 (3)
  • 5Rongmo Luo,Hua Li,Khin Yong Lam.Modeling and simulation of chemo-electro-mechanical behavior of pH-electric-sensitive hydrogel[J]. Analytical and Bioanalytical Chemistry . 2007 (3)
  • 6Qing-Sheng Yang,Cai-Qin Cui,Xu-Zhi Lu.A general procedure for modeling physicochemical coupling behaviour of advanced materials—Part I: Theory[J]. Multidiscipline Modeling in Materials and Structures . 2005 (3)
  • 7J. van Meerveld,M. M. Molenaar,J. M. Huyghe,F. P. T. Baaijens.Analytical Solution of Compression, Free Swelling and Electrical Loading of Saturated Charged Porous Media[J]. Transport in Porous Media . 2003 (1-2)
  • 8Gamal N. Ahmed,James P. Hurst.Modeling Pore Pressure, Moisture, and Temperature in High-Strength Concrete Columns Exposed to Fire[J]. Fire Technology . 1999 (3)
  • 9J. Huyghe,J.D. Janssen.Thermo-Chemo-Electro-Mechanical Formulation of Saturated Charged Porous Solids[J]. Transport in Porous Media . 1999 (1-3)
  • 10Zhou X X,Ghassemi A.Finite element analysis ofcoupled chemo-poro-thermo-mechanical effects arounda wellbore in swelling shale. International Journalof Rock Mechanics and Mining Sciences . 2009

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部