期刊文献+

连续多精度整数的快速乘方

A fast power algorithm of continuous multiprecision integers
下载PDF
导出
摘要 给出了计算连续多精度整数或准连续多精度整数乘方的快速算法,分析了算法的计算复杂度,并将新算法与普通求乘方方法进行了比较,试验结果表明新提出的算法比普通算法更有效.最后给出了算法在二次筛法中的应用. A fast power algorithm for continuous and semi-continuous multiprecision integers was proposed, and its complexity was also analyzed. The general algorithm was compared with the fast power algorithm. The experimental results demonstrate that this new proposed algorithm is more efficient than others. Finally, the algorithm was applied to a quadratic sieve.
出处 《山东大学学报(工学版)》 CAS 2008年第1期101-104,共4页 Journal of Shandong University(Engineering Science)
关键词 乘方 分解因子 二次筛法 多精度整数 power factorization factor quadratic sieve multiprecision integer
  • 相关文献

参考文献11

  • 1KNUTH D. The art of computer programming[M]. New York: Addison-Wesley, 1971.
  • 2RIVEST R L, SHAMIR A, ADLEMAN L. A method for obtaining digital signatures and public-key cryptosystems [J]. Comm ACM, 1978, 21:120-126.
  • 3POLLARD J. A Monte Carlo method for factorization[J]. BIT, 1975, 15(3): 331-334.
  • 4POLLARD J. Theorems on factorizafion and primality testing [J]. Proc Cambr Philos Soc, 1974, 76(2) :521-528.
  • 5MORRISON M A. BRILLHART J. A method of factoring and the factorization of F7[J]. Math Comp, 1975, 29:183-205.
  • 6LENSTRA H W. Factoring integers with elliptic curves[ J]. Annals o f Mathematics, 1987, 126:649-673.
  • 7BRESSOUD D M. Factorization and primality testing[M]. New York: Springer-Verlag, 1989.
  • 8RIESEL H. Prime numbers and computer methods for factorization[M]. 2nd ed. Boston: Birkhauser, 1994.
  • 9LANDQUIST ERIC. The quadratic sieve factoring algorithm [EB/OL]. (2001-12-14) [2007-03-26]. http://www.math. uiuc.edu/~landquis/quadsieve.pdf.
  • 10SHOUP V. A computational introduction to number theory and algebra[M]. Cambridge: Cambridge University Press, 2005.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部