期刊文献+

基于SVM的多Agent信息融合算法 被引量:1

An Algorithm of Multi-Agent Information Fusion Based on SVM
下载PDF
导出
摘要 支持向量机(SVM)是一种基于结构风险最小化原理、具有很高泛化性能的学习算法,为小样本、非线性、高维数一类信息融合问题的建模提供了一种有效的途径。本文将Mobile Agent运用到信息融合系统中,对信息融合系统中原有OODA模型进行改进,提出了一种基于SVM的Mobile Agent信息融合模型及算法。相关实验表明,本文中的训练算法可达到更为满意的分类效果,并且可以得到较高的分类精度。 The support vector machine (SVM) is an algorithm based on structure risk minimizing principle and has high gener-alization ability. The model offers a kind of effective way for the information fusion problem of little sample, non-linear and high dimension. In this paper, mobile agent is applied to information fusion system. The model of OODA and the study method of information fusion system are improved. The model and an algorithm of information fusion based on the support vector machine are proposed. The experiment results show that this hierarchical and parallel SVM training algorithm is efficient to deal with large-scale classification problems and has more satisfying accuracy in classification precision.
出处 《计算机科学》 CSCD 北大核心 2008年第3期191-193,共3页 Computer Science
基金 国家自然科学基金(60673131) 黑龙江省自然科学基金(F2005-02)
关键词 支持向量机 移动AGENT 信息融合 Support vector machine(SVM),Mobile agent,Information fusion
  • 相关文献

参考文献9

  • 1Varshney P K. Distributed Detection and Data Fusion. New York: Springer-Verlag, 1996
  • 2Shahbazian E, Dale E, Blodgett P L. The Extended OODA Model for Data Fusion Systems. In: Proceeding of International Conference on Information Fusion, USA, 2001
  • 3Shaban K B. Information Fusion in a Cooperative Multi-agent System for Web Information Retrieval. In: Proceedings of the Fifth International Conference on Information Fusion, Singapore, 2002
  • 4Kim Yongseog. Information Fusion via a Hierarchical Neural Network model. Journal of Computer Information Systems,2005(4) : 1-13
  • 5田盛丰,黄厚宽.基于支持向量机的数据库学习算法[J].计算机研究与发展,2000,37(1):17-22. 被引量:53
  • 6Vapnik V N. The Nature of Statistical Leafing Theory. New York: Springer-Verlag, 1995
  • 7Kumar R,Wolenetz M, Agarwalla B. A Framework for Distributed Data Fusion. Information Fusion, 2007,8(3):227-251
  • 8Andler S F, Niklasson L, Persson O B. A Information Fusion from Databases, Sensors and Simulations: a Collaborative Research Program. In: 29th Annual IEEE/NASA Software Engineering Workshop, 2006
  • 9Wen Y M, Lu B L. A cascade method for reducing training time and the number of support vectors. In:Proceeding of International Symposium on Neural Network, Dalian, 2004

二级参考文献1

  • 1Mehrotra S,SIAM J Optimization,1992年,2卷,4期,575页

共引文献52

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部