期刊文献+

基于提升小波变换的信号降噪及其工程应用 被引量:22

Signal denoising based on lifting wavelet transform and its application
下载PDF
导出
摘要 为了解决炮膛检测中的噪声抑制问题,在讨论提升小波变换基本原理及其特点的基础上,采用提升小波变换的方法构造小波,介绍了基于插值细分法的提升小波,讨论了其降噪原理。通过实验对比研究了不同类型的经典提升小波和插值细分小波的降噪效果以及小波支集与降噪效果之间的关系,为选择降噪小波提供了理论依据。将该结论应用于炮膛检测系统中身管内径测量信号的降噪处理,取得了满意的效果。 The lifting wavelet transform is employed to construct wavelet to solve the problem of noise reduction in gun bore detection,according to the theory and characteristics of the lifting wavelet transform.A SGWT algorithm which employs interpolating subdivision is described,and then its principle of denoising is discussed.Tbe denoising effect and the relationship between wavelet support and denoising result are investigated by experiment.The conclusion of this research work gives a reference to select wavelet for signal denoising. It is shown that better that denoising effect for gun barrel radius measuring signals in detecting system of gun bore are achieved by using the proposed method.
机构地区 军械工程学院
出处 《计算机工程与应用》 CSCD 北大核心 2008年第10期234-237,共4页 Computer Engineering and Applications
基金 国家自然科学基金(the National Natural Science Foundation of China under Grant No.503175157)
关键词 降噪 提升小波 插值细分法 炮膛检测 denoising lifting wavelet interpolating subdivision gun bore detection
  • 相关文献

参考文献5

  • 1Daubechies I,Swenldens W.Factoring wavelet transform into lifting steps[J].Journal of J Math Anal Appl,1998,4(3):247-269.
  • 2Claypoole R L.Flexible wavelet transforms using lifting[EB/OL]. ( 1998 )[2002-09-23].http://www.seg.drg/meetings/past/seg 1998/tech-prog/st 18/paper 1.375.pdf.
  • 3Sweldens W,Schroder P.Building your own wavelet at home[EB/ OL].( 1996 ).http://cm.bell-labs.com/who/wim/papers/papers.htm#athome.
  • 4段晨东,何正嘉.第二代小波降噪及其在故障诊断系统中的应用[J].小型微型计算机系统,2004,25(7):1341-1343. 被引量:22
  • 5杨福生.小波变换的工程分析与应用[M].北京:科学出版社,2001..

二级参考文献3

  • 1[1]Wim Sweldens, Peter Schr?der. Building your own wavelets at home[EB/OL]. http://cm.belhlabs.com/who/wim/papers/papers.html #athors,2000-01-02 1996.
  • 2[2]Daubechies I, Swenldens W. Factoring wavelet transform into lifting steps[J]. Journal of J.Math Anal Appl., 1998, 4(3):247-269.
  • 3[3]Claypoole Roger L, et al. Flexible wavelet transforms using lifting[EB/OL]. http://www.seg.drg/meetings/past/seg1998/techprog/st18/paper1375.pdf2002-09-23,1998.

共引文献133

同被引文献184

引证文献22

二级引证文献113

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部