摘要
随着电子商务站点用户和商品项数量的不断增长,用户评分数据稀疏性问题成为基于项目的协同过滤推荐算法的瓶颈;文章提出了项目类别相似性的计算方法,并将项目类别相似性与传统的项目评分相似性进行加权组合,得到项目综合相似性,从而在提高最近邻居项目搜寻准确度的同时也缓解了数据稀疏性问题;实验结果表明,该算法能有效提高推荐质量。
With the increasing of quantity of users and goods in E-commerce websites, the sparse users rating data problem has been a bottleneck of the item-based collaborative filtering algorithm. To solve the problem, a computing method of item category similarity is proposed. Item category similarity and traditional item rating similarity have been synthesized to get synthetical item similarity, thus the accurate degree of searching nearest neighbor items has been improved and the sparse users rating data problem has been alleviated simultaneously. The experimental results show that the algorithm can efficiently improve recommendation quality.
出处
《合肥工业大学学报(自然科学版)》
CAS
CSCD
北大核心
2008年第3期360-363,共4页
Journal of Hefei University of Technology:Natural Science
基金
教育部重点资助项目(107067)
高校博士点基金资助项目(20050359006)
关键词
协同过滤
推荐算法
项目类别相似性
平均绝对偏差
collaborative filtering
recommendation algorithm
item category similarity
mean absolute error