期刊文献+

Low cycle fatigue improvement of powder metallurgy titanium alloy through thermomechanical treatment 被引量:1

Low cycle fatigue improvement of powder metallurgy titanium alloy through thermomechanical treatment
下载PDF
导出
摘要 A low-cost β type Ti-1.5Fe-6.8Mo-4.8Al-1.2Nd (mass fraction, %)(T12LCC) alloy was produced by blended elemental powder metallurgy(P/M) method and subsequent thermomechanical treatment. Low cycle fatigue(LCF) behavior of P/M T12LCC alloy before and after thermomechanical treatment was studied. The results show that the LCF resistance of P/M titanium alloy is significantly enhanced through the thermomechanical treatment. The mechanisms for the improvement of LCF behavior are attributed to the elimination of residual pores, the microstructure refining and homogenization. A low-cost β type Ti-1.5Fe-6.8Mo-4.8Al-1.2Nd (mass fraction, %)(T12LCC) alloy was produced by blended elemental powder metallurgy(P/M) method and subsequent thermomechanical treatment. Low cycle fatigue(LCF) behavior of P/M T12LCC alloy before and after thermomechanical treatment was studied. The results show that the LCF resistance of P/M titanium alloy is significantly enhanced through the thermomechanical treatment. The mechanisms for the improvement of LCF behavior are attributed to the elimination of residual pores, the microstructure refining and homogenization.
出处 《中国有色金属学会会刊:英文版》 EI CSCD 2008年第2期227-232,共6页 Transactions of Nonferrous Metals Society of China
基金 Project(2001AA332010) supported by the National Advanced Materials Committee of China
关键词 冶金术 变形热处理 合金材料 titanium alloy powder metallurgy low cycle fatigue thermomechanical treatment
  • 相关文献

参考文献23

  • 1ABKOWITZ S, WEIHRAUCH P. Trimming the cost of MMCs [J]. Advanced Materials & Processes, 1989, 136: 31-34.
  • 2SAITO T, FURUTA T. Blended elemental P/M synthesis and property evaluation of Ti-1100 alloy [C]// BANDO Y, KOSUGE L. Proceedings of Powder Metal World Conference. JPMA-JSPM, Kyoto, 1993: 606.
  • 3AKAHORI T, NIINOMI M, FUKUI H, OGAWA M, TODA H, Improvement in fatigue characteristics of newly developed beta type titanium alloy for biomedical applications by thermo-mechanical treatments [J]. Materials Science and Engineering C, 2005, 25: 248-254.
  • 4BOYER R R, RACK H J, VENKATESH V. Influence of thermomechanical processing on the smooth fatigue properties of Ti-15V-3Cr-3Al-3Sn [J]. Materials Science and Engineering A, 1998, 243: 97-102.
  • 5ABKOWITZ S, ROWELL D. Superior fatigue properties for bended elemental P/M Ti-6A1-4V [J]. Journal of Metals, 1986, 38: 36-39.
  • 6HAGIWARA M, KIM S J, EMURA S. Blended elemental P/M synthesis of Ti-6Al-1.7Fe-0.1Si alloy with improved high cycle fatigue strength [J]. Scripta Materialia, 1998, 39:1185-1190.
  • 7GLOANEC A L, HENAFF G, BERTHEAU D, BELAYGUE P, GRANGE M. Fatigue crack growth behaviour of a gamma-titanium-aluminize alloy prepared by casting and powder metallurgy [J]. Scripta Materialia, 2003, 49: 825-830.
  • 8MASUO H, SATOSHI E. Blended elemental P/M synthesis and property evaluation of Ti-1100 alloy [J]. Materials Science and Engineering A, 2003, 352: 85-92.
  • 9IVASISH1N O M, BONDAREVA K A, BONDARCHUK V I, GERASIMCHUK O N, SAVVAKIN D G, GRYAZNOV B A. Fatigue resistance of powder metallurgy Ti-6Al-4V alloy [J]. Strength of Materials, 2004, 36: 225-230.
  • 10WILLIAMS C R, LEE Y L, RILLY J T. A practical method for statistical analysis of strain-life fatigue data [J]. International Journal of Fatigue, 2003, 25: 427-436.

同被引文献15

  • 1HODGSON P D.Elastic modulus and hardness of cortical and trabecular bovine bone measured by nanoindentation[J].中国有色金属学会会刊:英文版,2006,16(B02):744-748. 被引量:5
  • 2JIN F Y,CHU P K,WANG K,et al.Thermal stability of titania films prepared on titanium by micro-arc oxidation[J].Materials Science and Engineering,2008,A476(1-2):78-82.
  • 3LIU Y,CHEN L F,TANG H P,et al.Design of powder metallurgy titanium alloys and composites[J].Materials Science and Engineering,2006,A418(1-2):25-35.
  • 4HAN Y,HONG S H,XU K W.Structure and in vitro bioactivity of titania-based films by micro-arc oxidation[J].Surface and Coatings Technology,2003,168(2-3):249-258.
  • 5POKORSKA I.Modeling of powder metallurgy processes[J].Advanced Powder Technology,2007,18(5):503-539.
  • 6NARAYANASAMY R,ANANDAKRISHNAN V,PANDEY K S.Effect of carbon content on instantaneous strain-hardening behaviour of powder metallurgy steels[J].Materials Science and Engineering,2008,A497(1-2):505-511.
  • 7PEREZ P,SALMI G,MUNOZ A,et al.Influence of yttria additions on the oxidation behaviour of titanium prepared by powder metallurgy[J].Scripta Materialia,2009,60(11):1 008-1 011.
  • 8NAN K H,WU T,CHEN J H,JIANG S,et al.Strontium doped hydroxyapatite film formed by micro-arc oxidation[J].Materials Science and Engineering,2009,C29(5):1 554-1 558.
  • 9LI J X,ZHANG Y M,HAN Y,et al.Effects of micro-arc oxidation on bond strength of titanium to porcelain[J].Surface and Coatings Technology,2010,204(8):1 252-1 258.
  • 10DENG F L,ZHANG W Z,ZHANG P F,et al.Improvement in the morphology of micro-arc oxidised titanium surfaces:a new process to increase osteoblast respongse[J].Materials Science and Engineering,2010,C30(1):141-147.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部