期刊文献+

加速度计非线性项系数校准误差分析与建模 被引量:13

Error Analysis and Modeling in Calibration of Accelerometers’ Nonlinear Terms’ Coefficients
原文传递
导出
摘要 分析了线加速度计精密离心机校准的误差来源,建立了加速度计静态特性方程各次项系数校准的系统误差传递模型,通过该模型可以实现各系统误差因素对方程系数校准结果影响的定量分析。证明了离心机加速度输出恒值系统误差不影响三次项系数,而线性变化的系统误差不影响零次项系数,即零g点偏值。对理论分析的结果进行了仿真验证。 The error sources of linear accelerometers' calibration were analyzed by precision centrifuge testing. The systematic error propagation model of calibration for each coefficient of the property equation of the accelerometers was built. By this model, it could be quantificationally analyzed how each systematic error source influenced the calibration result of the equation coefficients. It is demonstrated that constant systematic errors of the acceleration values of the precision centrifuge outputs will not affect the coefficient of the third-order term, while the linear varying errors of the acceleration values will not affect the coefficient of the zero-order term, which represents the zero-g offset. The result of the theoretical analysis was verified by simulation.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第6期1633-1635,共3页 Journal of System Simulation
关键词 加速度计 静态特性 离心机 校准 误差模型 accelerometers static properties centrifuge calibration error model
  • 相关文献

参考文献6

二级参考文献7

  • 1范饮珊.工程力学教程[M].高等教育出版社,1998..
  • 2哈尔滨工业大学理论力学教研室.理论力学[M].高等教育出版社,1977..
  • 3Sweldens W. The lifting scheme: A new philosophy in biorthogonal wavelet constructions[C]// Proceedings of SPIE on wavelet Applications in Signal and Image Processing III. San Diego:SPIE,1995: 68-79.
  • 4Daubechies I. Factoring wavelet transforms into lifting steps[J].Journal of Fourier Analysis and Application(S 1069-5869), 1998, 4(3):245-267.
  • 5Sweldens W. The lifting scheme:A construction of second generation wavelets[J]. SIAM Journal Mathematical Analysis (S0036-1410),1997, 29(2): 511-546.
  • 6J Henk, M Heijmans, John Goutsias. Nolinear Multiresolution Signal Decomposition Schemes[J]. IEEE Transactions on Image Proocessing(S1057-7149), 2000, 11(9): 1897-1913.
  • 7Stoer J. Introduction to Numerical Analysis[M]. NewYork: Springer-Verlag Inc. 1980.

共引文献147

同被引文献94

引证文献13

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部