期刊文献+

青藏铁路安多试验段多年冻土斜坡路基的稳定性 被引量:7

Stability of the Slope Embankment of Andou Test Section on Qinghai-Tibet Railway in Permafrost Area
下载PDF
导出
摘要 青藏铁路安多试验段位于青藏高原腹地多年冻土区内,地形成10^o~20^o的斜坡。地层条件为粉质黏土、含土冰层和泥岩。路基设计时采取了3种工程措施确保斜坡路基的稳定。在试验段内设置3个测试断面,其中在热融滑塌区内2个,区外1个。每个断面布置6个测温孔、4个冻胀板、4根竖向测斜管。对2004至2006年共3年的监测数据分析可知:路基填筑后形成的人为上限改变了天然边坡的水文条件;水平位移主要发生在人为上限以上的土体,其界面为潜在滑移面。利用极限平衡法进行斜坡路基稳定性计算,结果表明,没有设置土工格栅的冻土斜坡路基在达到最大融化深度时,其稳定性系数最小。 Abstract. Embankment of Andou test section is located on the terrain at the inclination of 10^o-20 ^o in permafrost area in Qinghai-Tibet Plateau, and the stratums are composed by silty clay, icy clay and mudstone. In order to assure the stability of slope, three measures are used in the period of subgrade construction. There are three monitoring profiles that two of them placed in the area of solifluction and the other placed out of it. Six temperature-measured holes, four inclination-measured pipes, and four settlementmeasured plates are set up in each monitoring section. The conclusion can be deduced from the monitoring data of 3 years from 2004 to 2006. The hydrological condition has been changed due to hoist of permafrost table after the construction of the embankment. The horizontal displacement mainly occurred at the soil mass above the artificial permafrost table, and its interface was regarded as the latent slip plane. Limit balance method was used to calculate the stability of slope embankment. Results indicate that the stability coefficient is minimal at maximal thawed depth when there is no geogrid in permafrost slope embankment.
出处 《中国铁道科学》 EI CAS CSCD 北大核心 2008年第2期6-11,共6页 China Railway Science
基金 铁道部科技研究开发计划项目(2001-D-03) 北京交通大学人才基金资助项目(2007RC089)
关键词 斜坡路基 多年冻土 稳定性 潜在滑移面 土工格栅 青藏铁路 Slope embankment Permafrost Stability Latent slip planet Geogrid Qinghai-Tibet Railway
  • 相关文献

参考文献9

二级参考文献26

  • 1王绍令.青藏公路风火山地区的热融滑塌[J].冰川冻土,1990,12(1):63-70. 被引量:21
  • 2吴紫汪 程国栋.冻土路基工程[M].兰州:兰州大学出版社,1988..
  • 3Pufahl D E, Morgenstern N R. Stabilization of planar landslides in permafrost [J]. Can. Geotech. J., 1979, (16): 734-747.
  • 4Dramis F, Govi M, Guglielmin M, et al. Mountain permafrost and slope instability in the Italian Alps: the Val Pola Landslide [J]. Permafrost Periglac. Process, 1995, 6(1): 73-82.
  • 5Matsuoka N, Hirakawa K, Watanabe T, et al. Monitoring of periglacial slope processes in the Swiss Alps: the first two year of frost shattering, heave and creep [J]. Permafrost Periglac. Process, 1997, (8): 155-177.
  • 6Harris C, Davies M C R, Etzelmuller B. The assessment of potential geotechnical hazards associated with mountain permafrost in a warming global climate [J]. Permafrost Periglac. Process, 2001, (12): 145-156.
  • 7McRoberts E C, Morgenstern N R. The stability of thawing slopes [J]. Can. Geotech. J., 1974, (11): 447-469.
  • 8Weeks A G. The stability of natural slopes in south-east England as affected by periglacial activity [J]. Quarterly Journal of Engineering Geology, 1969, (2): 49-63.
  • 9Hutchinson J N. Periglacial solifluction: an approximate mechanism for clay soil [J]. Geotchnique, 1974, (24): 438-443.
  • 10Tien H Wu. Soil movement on permafrost slopes near Fairbanks, Alaska [J]. Can. Geotech. J., 1984, (21): 699-709.

共引文献114

同被引文献154

引证文献7

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部