期刊文献+

近几年来国外信息检索模型研究进展 被引量:16

The Review of Information Retrieval Models in Recent Years
下载PDF
导出
摘要 信息检索模型是信息检索的核心。近几年来国外对于布尔模型的研究主要表现在对布尔模型的改进及对扩展布尔模型的进一步优化。对向量空间模型的研究,主要集中在对向量空间模型的扩展研究及对向量空间模型的应用方面。概率模型的发展主要集中在继续对概率模型进一步的研究,其与其它信息检索模型的结合,以及语言模型的研究和发展。近年来对于新兴的基于本体的信息检索模型的研究,主要集中在对基于本体的信息检索模型理论的研究,与其它检索模型的融合,以及基于本体检索模型的应用。国外信息检索模型研究的最新成果,为国内此方面的研究提供了前沿性的参考信息。 Ilnformation retrieval models are the important components of information retrieval. In recent years, the research of foreign countries on Boolean retrieval model mainly includes improvement and optimization. The research on vector space retrieval model includes the expansion and application. The research on probability retrieval model includes further study, combination with other information retrieval models, and the research and development of language model. The research on ontology-based information retrieval model includes the theory, combination with other information retrieval models and application. The latest achievements of information retrieval models will provide references for domestic research on information retrievalmodels.
作者 孙坦 周静怡
出处 《图书馆建设》 CSSCI 北大核心 2008年第3期82-85,共4页 Library Development
关键词 信息检索 布尔模型 向量空间模型 概率模型 语言模型 本体 Information retrieval Boolean retrieval model Vector space retrieval model Probability retrieval model Language model Ontology
  • 相关文献

参考文献23

  • 1Cordo'n O, E. Herrera-Viedma, Luque M. Improving the Learning of Boolean Queries By Neans of a Multiobjective IQBE Evolutionary Algorithm[J]. Information Processing and Management,2006 (3): 615- 632.
  • 2Smith MP, Smith M. The Use of Genetic Programming to Build Boolean Queries for Text Retrieval Through Relevance Feedback [J]. Journal of Information Science, 1997 (6):423-431.
  • 3Coello, C. A., Veldhuizen V, etc. Evolutionary Algorithms for Solving Multi-objective Problems [M]. Kluwer. Academic Publishers, 2002.
  • 4Choi J, Kim M, Raghavan VV. Adaptive Relevance Feedback Method of Extended Boolean Model Using Hierarchical Clustering Techniques [J]. Information Processing and Management, 2006 (2): 331-349.
  • 5Zadrozny, Kacprzyk S, J. An Extended Fuzzy Boolean Model of Information Retrieval Revisited[C]. The 14th IEEE International Conference on Fuzzy Systems, 2005.
  • 6Kontostathis A, Pottenger WM. A Framework for Understanding Latent Semantic Indexing (LSI) Performance[J]. Information Processing and Management, 2006 (1):56-73.
  • 7Efron M. Query Expansion and Dimensionality Reduction: Notions of Optimality in Rocchio Relevance Feedback and Latent Semantic Indexing [J]. Information Processing and Management, 2008 (1): 163-180.
  • 8Kumar CA, Sriniva S. Latent Semantic Indexing Using Eigenvalue Analysis for Efficient Information Retrieval[J]. Int.J.Appl.Math. Comput. Sci., 2006 (4):551-558.
  • 9Gansterer WN, Janecek AGK, Robert Neumayer. Spam Filtering Based on Latent Semantic Indexing[M]. Survey of Text Mining Ⅱ, London :Springer, 2008.
  • 10Namunu C, Li Haizhou,Mohan S. Music Structure Based Vector Space retrieval[C]. Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 2006:67-74.

同被引文献196

引证文献16

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部