期刊文献+

基于Mumford-Shah模型的局部水平集分割窄带算法

Narrow band approach to local level set segmentation by Mumford-Shah model
下载PDF
导出
摘要 提出了一种基于Mumford-Shah推广模型的水平集能量函数,引入了梯度特征,并在此基础上提出了一种新的局部水平集分割方法,提高了算法收敛速度,避免了图像中的无关边缘对分割结果的干扰.设计了窄带算法,克服了水平集方法初始化复杂的缺点.与窄带算法相结合,所提出的分割方法可以在杂波背景中得到分割的局部最优解.通过采用Otsu算子确定感兴趣目标初始位置,所提出的方法可用于具有不同灰度特征的多目标分割.实验证明了所提出的方法用于复杂背景下的目标分割以及多目标分割时的有效性和计算效率. A general form of energy function for Mumford-Shah model, in which the gradient feature was introcuce, was deduced based on level set method. A new local level set based segmentation approach was proposed, which can improve the convergence velocity and avoid the influence of irrelevent edges. A narrow band algorithm was also designed to overcome the complex initialization of the classical level set approach. Combined with the narrow band algorithm, the proposed segmentation approach can obtain local optimal results in clutter. With Otsu operator the method to locate interested targets, the approach proposed can segment mhiple targets with different features. Experiments demonstrate that the approach is efficient in computation and is effective in target segmentation in clutter and in multiple targets segmentation.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第3期88-91,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国防预研基金资助项目 “十一五”国防重点预研项目
关键词 图像分割 轮廓提取 水平集 窄带 image segmentation contour extraction level set narrow band
  • 相关文献

参考文献8

  • 1Osher S, Sethian J A. Fronts propagating with curvature dependent speed: algorithms based on Hamilton Jacbi formulations[J]. Journal of Computational Physics, 1988, 79: 12-49.
  • 2Chan T F, Vese L A. Aclive contours without edges [J]. IEEE Trans on Image Processing, 2001, 10(2): 266-277.
  • 3Malladi R, Sethian J A. Level set and fast marching methods in image processing and computer vision[C] //Proceedings of International Conference on Image Processing. Lausanne: IEEE, 1996:489-492.
  • 4Sethian J A. Evolution, implementation, and application of level set and fast marching methods for advancing fronts [J]. Journal of Computational Physics, 2001, 169:503-555.
  • 5Malladi R, Sethian J A, Vemuri B C. Shape modeling with front propagation: a level set approach [J]. IEEE Trans PAMI, 1995, 17(2) : 158-175.
  • 6Iwashita Y, Kurazume R. Fast implementation of level set method and its real-time applications[C]// Proceedings of IEEE International Conference on Systems, Man and Cybernetics. Hague: IEEE, 2004: 6302-6307.
  • 7李俊,杨新,施鹏飞.基于Mumford-Shah模型的快速水平集图像分割方法[J].计算机学报,2002,25(11):1175-1183. 被引量:125
  • 8周则明,陈强,王平安,夏德深.基于窄带水平集的曲线演化与左心室MRI图像分割[J].计算机工程与应用,2003,39(27):46-48. 被引量:7

二级参考文献11

  • 1李俊.基于曲线演化的图像分割方法及应用:博士学位认文[M].上海:上海交通大学,2001..
  • 2Kass A Witkin, D Terzopoulos.Snake : active contour models[J].International Journal of Computer Vision, 1988; 1 (4) :321-331.
  • 3Osher S,Sethian J A.Fronts propagating with curvature dependent speed :algorithms based on the Hanilton-Jacobi formulation[J].Journal of Computational Physics, 1988 ; 79:12---49.
  • 4Adalsteinsson D,Sethian J A.A fast level set method for propagating interfaces[J].Journal of Computational Physics, 1995 ; 118 (2) : 269-277.
  • 5G S Jiang,D Peng.WENO Scheme for Hanmilton-Jacobi Equations[R]. UCLA CAM report 97-29,1997.
  • 6Peng Dan-ping,Merriman Barry et al.A PDE-based fast local level ser method[J].Journal of Computational Physics, 1999; 155(2) :410---438.
  • 7Sethian J A.Fast marching methods[J].SIAM Review, 1999;41(2) : 199-235.
  • 8Adalsteinsson D,Sethian J A.The fast construction of extension velocities in level set methods[J].Journal of Computational Physics,1999; 148( 1 ) :2-22.
  • 9Malladi R,Sethian J A.Shape modeling with front propagating:a level set approach[J].IEEE Transaction on Pattern Analysis and Machine Intelligence, 1995; 17(2):158-175.
  • 10Suri J S et al.Shape recovery algorithm using level sets in 2-D/3-D medical imagery:A state-of-art review[J].IEEE Transactions on Information technology in biomedicine,2002;6( 1 ) : 1-28.

共引文献130

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部