期刊文献+

基于特征选择和支持向量机的异常检测 被引量:11

Attribute selection-based and support vector machine for anomaly detection
下载PDF
导出
摘要 为在提高检测率的同时保持较低的虚警率,提出一种不同于单一算法的基于特征选择和支持向量机的异常检测技术.首先用一个数据子集进行特征选择,通过构造函数来计算特征间的相似度,并在不失样本信息的前提下,完成会话样本的特征选择;然后对用于训练和测试的数据执行特征选择,剔除不必要的数据特征;最后利用支持向量机来判断入侵.仿真实验表明:与基于标准的支持向量机、基于tf×idf的支持向量机、基于tf×idf的神经网络及基于数据挖掘等的异常检测相比较,该方法具有更高检测率,同时其虚警率也更低. In order to get a high detection rata and a low false rata, many researchers pay more atten tionin studying the algorithm for intrusion detection only. This paper proposes an attribute selectionbased and support vector machine (SVM) for anomaly detection, The first is attribute selection, which extracts some attributes from relatively corresponding attributes, The second is dealing with the attribute selection of training set and test set. Attribute selection removes attributes whose correlation with another attribute exceedsa threshold without lose any information. The results of our experiments show that not only the detection rata but also the false rata of our performance is superior to those of SVM, tf×idf with SVM, tf×idf with artificial neural network and data mining.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第3期99-102,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(60672049)
关键词 异常检测 特征选择 支持向量机 虚警率 检测率 anomaly detection attribute selection support vector machine false rate detection rate
  • 相关文献

参考文献11

  • 1Yang Xiangrong, Shen Junyi, Wang Rui. Artificial immune theory based network intrusion detection system and the algorithms design [C] // Proceedings of 2002 International Conference on Machine Learning and Cybernetics, Vol. 1. Piscataway: IEEE Press, 2002: 73-77.
  • 2Botha M, von Solms R. Utilizing fuzzy logic and trend analysis for effective intrusion detection [J]. Computers and Security, 2003, 22(5): 423-434.
  • 3Wang Yong, Yang Huihua, Wang Xingyu, et al. Distributed intrusion detection system based on data fusion method[C] // The 5th World Congress on Intelligent Control and Automation. Piscaaway: IEEE Press, 2004:4331-4334.
  • 4Foster I, Desselman C, Tuecke S. The anatomy of the grid: enabling callable virtual organization[J]. International Supercomputer Applications, 2001, 15(3) : 1-25.
  • 5Vapnik V N. The nature of statistical learning theory [M]. New York: Springer, 1995.
  • 6Cristianini N, Shawe-Taylor J. An introduction to support vector machines and other kernel-based learning methods[M]. Cambridge: Cambridge University Press, 2000.
  • 7Andrew H S. Identify important features for intrusion detection using support vector machines and neural networks [C] // IEEE Proceedings of the 2003 Symposium on Application and the Internet. Piscat away: IEEE Press, 2003: 209-217.
  • 8Gyuon I. Elisseeff A. An introduction to variable and feature selection [J]. Journal of Machine Learning Research, 2003(3): 1157-1182.
  • 9包潘晴,杨明福.基于KPCA和SVM的网络入侵检测[J].计算机应用与软件,2006,23(2):125-127. 被引量:19
  • 10Chen Wun-Hwa, Hsu Sheng-Hsun, Shen Hwang-Pin. Application of SVM and ANN for intrusion detection[J]. Computers & OR, 2003, 32:2617-2634.

二级参考文献7

  • 1Lee S.,Heinbuch D.,Training a neural-network based intrusion detector to recognize novel attacks,IEEE Transactions on Systems,Man and Cybernetics,Part A,2001,31 (4):294 ~299.
  • 2B.Balajiuath,S.V.Raghavan,Intrusion detection through learning behavior model,Computer Communication,2001,24 (2):1202 ~ 1212.
  • 3Ye,N.,A markov chain model of temporal behavior for anomaly detection,In Workshop on Information Assurance and Security,West Point,NY,June 2000.
  • 4S.Mukkamala,G.I.Janoski,A.H.Sung,Intrusion detection using support vector machines,Proceedings of the High Performance Computing Symposium-HPC 2002,pp.178 ~ 183,San Diego,April 2002.
  • 5B.Scholkopf,A.Smola,K.R.Muller,Nonlinear component analysis as a kernel eigenvalue problem,Neural Computation,1998,10 (5),1299 ~1319.
  • 6Vapnik V.N.,The nature of statistical learning theory,New York:Springer-Verlag,1995.
  • 7.[EB/OL].http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.,.

共引文献18

同被引文献65

引证文献11

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部