期刊文献+

基于HSV颜色空间和码本模型的运动目标检测 被引量:14

HSV color-space and codebook model based moving objects detection
下载PDF
导出
摘要 码本模型的思想就是根据像素的颜色失真程度和亮度范围将背景像素值量化后用码本表示,然后利用减背景思想对新输入像素值与其对应像素码本做比较判断,从而提取出前景运动目标像素。提出将像素从RGB空间转换到HSV空间来计算颜色失真度,多种像素亮度和颜色失真度计算方法的对比实验结果表明,该方法能取得更好的目标检测效果。 The codebook model represents each background pixel with some codeword based on its color distortion and brightness range. Then input pixel values of new frame are compared with the codebooks for identifying foreground pixels. Pixels are converted from RGB space to HSV space to compute pixel color distortion. Several methods of computing color distortion and brightness are experimented for contrast. The results show the new idea achieves better effectiveness for detecting moving objects.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2008年第3期423-427,共5页 Systems Engineering and Electronics
关键词 减背景 码本 监控视频 目标检测 background subtraction codebook surveillance video object detection
  • 相关文献

参考文献13

  • 1代科学,李国辉,涂丹,袁见.监控视频运动目标检测减背景技术的研究现状和展望[J].中国图象图形学报,2006,11(7):919-927. 被引量:169
  • 2Lipton A, Fujiyoshi H, Patil R. Moving target classification and tracking from real-time video [C] // IEEE Workshop on Applications of Computer Vision, Princeton, N J, 1998. 8- 14.
  • 3Cutler R, Davis L. View-based detection [C]//Int. Conf. Pattern Recognition, Brisbane, Australia, 1998.495 - 500.
  • 4Wren C R, Azarbayejani A, Darrell T, et al. Pfinder: Real-time tracking of the human body [J]. IEEE TPAMI, 1997, 19(7) 780 - 785.
  • 5Horprasert T, Harwood D, Davis L S. A statistical approach for real-time robust background subtraction and shadow detection [C] // IEEE Frame-Rate Applications Workshop, Kerkyra, Greece, 1999.
  • 6Stauffer C, Grimson W. Adaptive background mixture models for real-time tracking [C]//Int. Conf. CVPR, 1999,2:246 -252.
  • 7Elgammal A, Harwood D, Davis L S. Non-parametric model for background subtraction [C]//IEEE ECCV, 2000,2 : 751 - 767.
  • 8Toyama K, Krumm J, Brumitt B, et al. Wallflower: Principles and practice of background maintenance [C]//IEEE ICCV, 1999. 255-261.
  • 9Matsuyama T, Ohya T, Habe H. Background subtraction for nonstationary scenes [C]//ACCV, 2000 . 662 - 667.
  • 10Kim K, Chalidabhongse T H, Harwood D, et al. Background modeling and subtraction by codebook construction [C] // Proc. Int. Conf. Image Processing, Singapore, 2004:3061 - 3064.

二级参考文献47

  • 1Kilger M.A shadow handler in a video-based real-time traffic monitoring system[A].In:Proceedings of IEEE Workshop on Applications of Computer Vision[C],Palm Springs,CA,USA,1992:1060 ~ 1066.
  • 2Elgammal A.Background and foreground modeling using nonparametric kernel density estimation for visual surveillance[J].Proceedings of IEEE,2002,90 (7):1151 ~ 1163.
  • 3Friedman N,Russell S.Image segmentation in video sequences:A probabilistic approach[A].In:Proceedings of the 13th Conference on Uncertainty in Artificial Intelligence[C],Rhode Island,USA,1997:175 ~ 181.
  • 4Grimson W,Stauffer C,Romano R.Using adaptive tracking to classify and monitor activities in a site[A].In:Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition[C],Santa Barbara,CA,USA,1998:22 ~29.
  • 5Stauffer C,Grimson W.Adaptive background mixture models for realtime tracking[A].In:Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition[C],Fort Collins,Colorado,USA,1999,2:246~252.
  • 6Gao X,Boult T,Coetzee F,et al.Error analysis of background adaption[A].In:Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition[C],Hilton Head Isand,SC,USA,2000:503 ~510.
  • 7Power P W,Schoonees J A.Understanding background mixture models for foreground segmentation[A].In:Proceedings of Image and Vision Computing[C],Auckland,New Zealand,2002:267 ~271.
  • 8Lee D S,Hull J,Erol B.A Bayesian framework for gaussian mixture background modeling[A].In:Proceedings of IEEE International Conference on Image Processing[C],Barcelona,Spain,2003:973 ~ 976.
  • 9Rittscher J,Kato J,Joga S,et al.A probabilistic background model for tracking[A].In:Proceedings of European Conference on Computer Vision[C],Dublin,Ireland,2000,2:336 ~ 350.
  • 10Stenger B,Ramesh V,Paragios N,et al.Topology free hidden markov models:Application to background modeling[A].In:Proceedings of IEEE International Conference on Computer Vision[C],Vancouver,BC,Canada,2001,1:294 ~301.

共引文献168

同被引文献91

  • 1王鼎,沈辉,娄海涛.一种基于H-CrCb颜色空间的肤色检测算法研究[J].计算机科学,2012,39(S2):223-226. 被引量:6
  • 2代科学,李国辉,涂丹,袁见.监控视频运动目标检测减背景技术的研究现状和展望[J].中国图象图形学报,2006,11(7):919-927. 被引量:169
  • 3邵春福,赵熠,吴戈.道路交通数据采集技术研究展望[J].现代交通技术,2006,3(6):66-70. 被引量:15
  • 4代科学,李国辉.一种基于码本的监控视频运动目标检测算法[J].计算机工程,2007,33(14):27-29. 被引量:8
  • 5Christopher R W, Ali A, Trevor D, et al. Pfinder: real-time tracking of the human body[ J]. IEEE Transactions on PAMI, 1997, 19(7) : 780-785.
  • 6Nir F, Stuart R. Image segmentation in video sequences: a probabilistic approach [ C ]//Proceedings of the 13th Conference on Uncertainty in Artificial Intelligence. San Fransisco, USA:Morgan Kaufmann, 1997: 175-181.
  • 7Lucia M, Alfredo P. A self-organizing approach to background subtraction for visual surveillance applications [ J ]. IEEE Transactions on IP, 2008, 17 (7) : 1168-1177.
  • 8Kyungnam K, Thanarat H C, David H, et al. Real-time foreground-background segmentation using codebook model [ J ]. Real-Time Imaging, 2005, 11 (3) : 172-185.
  • 9Louis S L, Donald P, Xavier M. Real-time object detection and background maintenance for uncontrolled environments [ C]// Proceedings of the 5th International Conference on Signal Processing, Pattern Recognition, and Applications. Stevens Point, Wisconsin, USA: WSEAS, 2008: 599-604.
  • 10于仕琪,刘瑞祯.学习OpenCV(中文版)[M].北京:清华大学出版社,2009.

引证文献14

二级引证文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部