期刊文献+

SVM和HMM相结合的合成孔径雷达图像目标识别 被引量:10

Synthetic aperture radar images target recognition combined SVM with HMM
下载PDF
导出
摘要 提出了一种支持向量机和隐马尔可夫模型相结合的合成孔径雷达图像目标识别方法。该方法用小波分解和主成分分析提取图像特征,生成特征向量。利用图像在方位角上的关系由特征向量生成图像的特征序列以及隐马尔可夫模型的训练序列。用支持向量机进行目标预识别,确定目标最有可能所属的两个类别,用隐马尔可夫模型在这两个类别中确定目标最终所属类别,完成目标识别。使用MSTAR数据库中的图像数据对该方法进行验证和分析,结果表明,该方法可以明显提高目标的正确识别率,是一种有效的合成孔径雷达图像目标识别方法。 A method for synthetic aperture radar images target recognition using support vector machine combined with hidden Markov models is presented. Feature vectors are acquired by wavelet decomposition and principal component analysis. Feature sequences and training sequences for hidden Markov models are generated from feature vectors using the relationship of multi-images in aspect value. The support vector machine is used to perform pre-recognition in order to decide the two most probable classes the target may belong to. The hidden Markov models are used to determine which class of the two the target belongs to at last. Image samples of targets in MSTAR database are used to verify the method, and the results show that the proposed method can enhance the target recognition rate evidently and it is an effective method for synthetic aperture radar images target recognition.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2008年第3期447-451,共5页 Systems Engineering and Electronics
关键词 合成孔径雷达 识别 支持向量机 隐马尔可夫模型 synthetic aperture radar recognition support vector machine hidden Markov model
  • 相关文献

参考文献7

  • 1Vapnik V N. An overview of statistical learning theory[J]. IEEE Trans. on Neural Networks, 1999, 10(5), 988 - 999.
  • 2Zhao Q, Principe J C. Support vector machines for SAR automatic target recognition[J]. IEEE Trans. on Aerospace and Electronic Systems, 2001, 37(2) : 643 - 654.
  • 3Rabiner L. A tutorial on hidden Markov models and selected ap- plications in speech recognition [J]. Proceedings of IEEE, 1989,77: 257- 286.
  • 4Albrecht T W, Gustafson S C. Hidden Markov models for classifying SAR target images[J]. Proc. SPIE, 2004,5427:302 - 308.
  • 5Albrecht T W, Bauer Jr K W. Classification of sequenced SAR target images via hidden Markov models with decision fusion [J]. Proc. SPIE, 2005,5808: 306-313.
  • 6Sandirasegaram N, Englisth R. Comparative analysis of feature extraction (2D FFT and wavelet) and classification (Lp metric distances, MLP NN, and HNeT) algorithms for SAR imagery [J]. Proc. SPIE, 2005,5808: 314-325.
  • 7Ross T D, Worrell S W, Velten V J, et al. Standard SAR ATR evaluation experiments using the MSTAR public release data set [J]. Proc. SPIE, 1998,3370: 566-573.

同被引文献115

引证文献10

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部