期刊文献+

基于S变换的内燃机噪声信号时频特性 被引量:6

Time-frequency characteristics of noise signals based on S transform for internat combustion engine
下载PDF
导出
摘要 简述了S变换的基本原理,设计了仿真试验,对比分析短时Fourier变换与S变换的时频分析和信号检测能力.结果表明,S变换是一种更加有效的非稳态信号时频分析方法.以某六缸发动机为研究对象,采集机体前端和顶部噪声信号.采用S变换对噪声信号进行时频分析,分析信号能量在时频域内的分布规律及其频率成分随时间的变化情况,结合发动机的结构特点,分析噪声信号中比较突出的频率成分产生原因.S变换比较适合于发动机噪声信号时频特性研究,研究结果对发动机低噪声改进设计具有一定的参考价值. The basic principles of S transform were briefly discussed. The simulation experiment was conducted to compare the time-frequency analysis and signal detection capabilities of short-time Fourier transform and S transform. Comparisons show that S transform is a more effective time-frequency analysis method for non-stationary signals. Taking a six-cylinder engine as an example, noise signals from the engine front end and top surface were recorded. S transform was adopted to analyze the recorded noise signals in time-frequency domain. The energy distribution laws of noise signals and the variation of frequency components with time were subsequently analyzed. According to the engine structural characteristics, the generation cause of the more prominent frequency components was discussed. The analysis showed that S transform is more suitable for investigating the time-frequency characteristics of noise signals.
出处 《江苏大学学报(自然科学版)》 EI CAS 北大核心 2008年第2期115-118,共4页 Journal of Jiangsu University:Natural Science Edition
基金 国家自然科学基金资助项目(50575203)
关键词 内燃机 噪声信号 S变换 时频分析 internal combustion engine noise signals S transform time-frequency analysis
  • 相关文献

参考文献7

  • 1吕干云,程浩忠,郑金菊,汪晓东.基于S变换和多级SVM的电能质量扰动检测识别[J].电工技术学报,2006,21(1):121-126. 被引量:43
  • 2Pinnegar C R, Mansinha L. The S-transform with windows of arbitrary and varying shape [ J ]. Geophysics, 2003, 68(1) :381 -385.
  • 3Pinnegar C R, Eaton D W. Application of the S transform to prestack noise attenuation filtering [ J ]. Journal of Geophysical Research, 2003, 108 ( B9 ) : 1 - 10.
  • 4王成栋,张优云,夏勇.基于S变换的柴油机气阀机构故障诊断研究[J].内燃机学报,2003,21(4):271-275. 被引量:33
  • 5Stockwell R G, Mansinha L, Lowe R P. Localization of the complex spectrum: the S transform [ J ].IEEE Transactions on Signal Processing, 1996, 44 ( 4 ) : 998 - 1001.
  • 6Pinnegar C R, Mansinha L . Time-local Fourier analysis with a scalable, phase-modulated analyzing function: the S-transform with a complex window[J]. Signal Processing, 2004, 84:1167 - 1176.
  • 7Pinnegar C R, Mansinha L . Time-local spectral analysis for non-stationary time series: the S-transform for noisy signals [J]. Fluctuation and Noise Letters, 2003, 3 ( 3 ) : 357 - 364.

二级参考文献18

  • 1Stockwell R G,Mansinha L,Lowe R P. Localization of the Complex Spectrum: The S Transform [J]. IEEE Transactions on Signal Processing, 1996, 44(4) : 998-1001.
  • 2Mcfadden P D, Cook J G, Forster L M. Decomposition of Gear Vibration Signals by the Generalized S Transform [J]. Mechanical Systems and Signal Processing, 1999, 13(5): 691-707.
  • 3Dash P K,Mishra S,Salama M M A,et al.Classification of power system disturbances using a fuzzy expert system and a Fourier linear combiner.IEEE Trans.on Power Delivery,2001,15(2),:472~477
  • 4Heydt G T,Fjeld P S,Liu C C,et al.Applications of the windowed FFT to electric power quality assessment.IEEE Trans.on Power Delivery,1999,14(3):1411~1416
  • 5Shah Baki S R,Abdullah M Z,Abidin A F.Combination wavelets and artificial intelligent for classification and detection transient overvoltage.Research and Development,SCOReD 2002:177 ~180
  • 6Santoso S,Powers E J,Grady W M,et al.Power quality disturbance waveform recognition using wavelet-based neural classifier:I.theoretical foundation.IEEE Trans.on Power Delivery,2000,15(1):222~228
  • 7Ghosh A K,Lubkeman D L.The classification of power system disturbance waveforms using a neural network approach.IEEE Trans.on Power Delivery,1995,10(1):109~115
  • 8Abdel Galil T K,EL Sadany E F,Youssef A M,et al.On-line disturbance recognition utilizing vector quantization based fast match.2002 IEEE,Power Engineering Society Summer Meeting,2002,2:1027~1032
  • 9Gaouda A M,Kanoun S H,Salama M M A.On-line disturbance classification using nearest neighbor rule.Electr.Power Syst.Res.,2001,57:1~8
  • 10Emmanouil Styvaktakis,Math H J Bollen,Irene Y H Gu.Expert system for classification and analysis of power system events.IEEE Trans.on Power Delivery,2002,17(2):423~428

共引文献73

同被引文献38

引证文献6

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部