摘要
利用多元函数逼近、正泛函表示及半序空间间加性正算子延拓等结果给出了Rs中s-维立方体上矩量问题有解的充要条件,从而把古典的Hausdorf矩量问题的定理推广到高维情形。特别是随着逼近手段的变更,本文处理方法可类推到更一般的凸紧区域上。
Provides a sufficient and necessary condition for the conclusion of existing certain solution of some moment problems on s dimensional cube of R s by means of several results of the multivariate approximation, and thus the Hausdorff′s classical moment theorem can be extended to the high dimensional case. Especially, it is possible that the methods in this paper can be used in solving some similar problems for much more general convex compact sets of R s .
出处
《南京航空航天大学学报》
EI
CAS
CSCD
北大核心
1997年第3期301-305,共5页
Journal of Nanjing University of Aeronautics & Astronautics
关键词
矩量问题
算子逼近
测度
正泛函表示
中紧集
moment problems
approximation by operators
measurement
extension of positive operator
representation of positive functional