期刊文献+

基于ARMA(p,q)利率下生存年金精算现值模型 被引量:2

Actuarial present value models of Life annuity based on ARMA(p,q) interest rate
下载PDF
导出
摘要 利用时间序列理论将投资利率为条件稳定AR(p)模型和MA(q)模型推广为条件稳定ARMA(p,q)模型,根据缴费预定型养老金精算现值理论,得到了此推广利率模型下的生存年金精算现值模型,这对解决企业在平稳的利率环境下合理发放养老金,避免企业养老基金出现赤字等问题具有重要的理论指导意义和实际应用价值. Based on the theory of time series, the conditional steady AR (p) model and MA ( q ) model are extended into conditional steady ARMA ( p, q ) model. According to the defined contribution pension actuarial present value theory, the present actuarial value model of life annuity under relevant interest rate is derived. This model has important theoretical significance and practical application value in solving proper payment pensions for the enterprises and avoiding the deficit of pension funds in a stationary interest environment.
作者 谢杰华 邹娓
出处 《南昌工程学院学报》 CAS 2008年第1期39-43,共5页 Journal of Nanchang Institute of Technology
基金 南昌工程学院青年基金项目资助(2006KJ035)
关键词 缴费预定型企业年金保险 生存年金 精算现值 defined contributed enterprise annuity insurance life annuity actuarial present value
  • 相关文献

参考文献11

  • 1Bellhouse D R, Panjer H H. Stochastic modeling of interest rates with applications to life contingencies[ J ]. Journal of Risk and Insurance, 1980,47(1) :91 - 110.
  • 2Bellhouse D R, Panjer H H. Stochastic modeling of interest rates with applications to life contingencies-part Ⅱ[ J ]. Journal of Risk and In- surance, 1981,48(4) :628 - 637.
  • 3Frees E W. Stochastic life contingencies with solvency consideration[ J ]. Transaction of Society Actuaries, 1990,42:91 - 149.
  • 4Haberman S, Sung Joo- Ho. Dynamic approaches to pension funding[ J]. Insurance:Mathematics and Economics, 1994,15:151 - 162.
  • 5Haberman S. Moving average rates of return and variability of pension contributions and fund scheme[ J ]. Insurance : Mathematics and Economics, 1997,20:115 - 135.
  • 6Haberman S. Stochastic investment return and contribution rate risk in a defined benefit pension scheme[J]. Insurance:Mathematics and Economics, 1997,19 : 127 - 139.
  • 7Dhaene J. On approximating distribution by their de pill transforms[ J ]. Scandinavian Actuarial Journal, 1998,1:1 -23.
  • 8高建伟,李春杰.随机利率下缴费预定型企业年金保险中生存年金精算现值模型[J].系统工程,2004,22(5):53-56. 被引量:7
  • 9高建伟,丁克诠.MA(q)利率下企业生存年金精算现值模型[J].系统工程学报,2006,21(2):131-135. 被引量:10
  • 10高建伟,张兴平,高明.缴费预定型企业年金保险中基于滑动平均利率的生存年金精算现值模型[J].系统工程理论与实践,2006,26(8):27-32. 被引量:5

二级参考文献41

  • 1王晓军.对城镇职工养老保险制度长期精算平衡状况的分析[J].人口与经济,2001(S1):39-41. 被引量:19
  • 2何文炯,蒋庆荣.随机利率下的增额寿险[J].高校应用数学学报(A辑),1998,13(2):145-152. 被引量:36
  • 3王晓军.企业养老金计划精算模型[J].统计研究,1996,13(2):63-66. 被引量:12
  • 4Dhaene J.On approximating distribution by their de pril transforms[J].Scandinavian Actuarial Journal, 1998:1~23.
  • 5Haberman S.Stochastic investment return and con- tribution rate risk in a defined benefit pension scheme[J].Insurance:Mathematics and Economics, 1997, 19:127~139.
  • 6Zaks A.Annuities under random rates of interest [J].Insurance: Mathematics and Economics, 2001, 28:1~11.
  • 7Buhlmann H.Stochastic discounting[J].Insurance: Mathematics and Economics, 1992, 11:113~127.
  • 8Frees E W.Stochastic life contingencies with sol- vency considerations [J].Transaction of Societies of Actuaries, 1990,42:91~148.
  • 9雷宇.寿险精算学[M].北京:北京大学出版社,2001..
  • 10李晓林.一元生命保险与年金[M].北京:经济科学出版社,2000..

共引文献15

同被引文献7

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部