期刊文献+

一种改进的量子聚类算法 被引量:5

Parameter-Estimated Quantum Clustering Algorithm
下载PDF
导出
摘要 介绍了概率波函数、薛定锷方程、量子势能和量子聚类(Quantum clustering,QC)算法。给出了量子势能确定聚类中心的量子力学依据,强调其重点在于聚类中心的确定而非聚类边界;指出了QC算法中的波函数相当于一个核函数,其中的尺度参数的实质是核宽度调节参数,并给出一种有关它的直方图估算方法。基于此,本文提出一种基于核宽度调节参数估算的改进的量子聚类(Parameter-estimated quantum clustering,PeQC)算法,可克服QC算法中要通过多次训练来最后选取参数的不足。通过与QC算法的实验比较,证明该算法有较高的聚类效能,比标准量子聚类算法简单可行、易操作。 Probability wave function,Schrdinger equation,quantum potential and quantum clustering(QC) algorithm are introduced.By analyzing the physical essence of the quantum clustering algorithm,the quantum potential is based on the theoretical basis of QC algorithm in quantum mechanics,thus it is used to determine the cluster centers rather than the clustering boundary.Moreover,the probability wave function of QC algorithm is a kernel function for converting the nonlinear input space to a Hilbert space,and the scale-parameter δ therein is accordingly revealed to be the corresponding kernel width.Based on the above,the parameter-estimated quantum clustering algorithm PeQC is proposed to overcome the defect,that is,the parameter is often needed to be estimated by experiments many times.Experimental results demonstrate that the algorithm can be easily realized than QC algorithm.
出处 《数据采集与处理》 CSCD 北大核心 2008年第2期211-214,共4页 Journal of Data Acquisition and Processing
关键词 量子聚类算法 核宽度调节参数 量子势能 参数估计 quantum clustering algorithm kernel width adjustive parameter quantum potential parameter estimation
  • 相关文献

参考文献11

  • 1Gasiorowicz S. Quantum physics[M]. New York: Wiley, 1996.
  • 2Horn D, Gottlieb A. The method of quantum clustering[J]. Proc of Advances in Neural Infor Proc Systems, 2001,14 : 769-776.
  • 3Horn D, Gottlieb A. Algorithm for data clustering in pattern recognition problems based on quantum mechanics [J]. Physical Review Letters, 2002, 88(1):018702.1-018702.4.
  • 4Horn D. Clustering via Hilbert space[J]. Physica A, 2001,302:70-79.
  • 5Horn D, Axel I. Novel clustering algorithm for microarray expression data in a truncated SVD space [J]. Bioinformatics, 2003,19(9). 1110-1115.
  • 6Vapnik V. Statistical learning theory[M]. Wiley, New York : John Wiley & Sons, 1998.
  • 7Silverman B W. Density estimation for statistics and data analysis[M]. New York: Chapman and Hall, 1986.
  • 8Roberts S J. Non-parametric unsupervised cluster analysis[J]. Pattern Recognition, 1997,30(2) : 261- 272.
  • 9Nasios N, Adrian G B. Kernel-based classification using quantum mechanics [J]. Patter Recognition, 2007,40.875-889.
  • 10Horn D, Gottlieb A, Axel I. Quantum clustering [EB/OL]. http://neuron. tau. ac. il/- horn/QC. htm,2001/2002.

同被引文献63

引证文献5

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部