期刊文献+

火炮身管缺陷漏磁信号的识别

MFL Signal Identification of Gun Barrel Defect
下载PDF
导出
摘要 在对火炮身管缺陷进行漏磁检测时,由于内表面膛线的存在,漏磁信号中除缺陷信号外,还有系统噪声和膛线干扰信号。说明了自适应滤波方法和小波变换分别去除膛线干扰信号和系统噪声的原理。在仿真试验中,自适应滤波的权值学习算法采用最小均方算法,自适应滤波的原始输入和参考输入信号来自于不同的两个传感器;选取二阶样条小波为小波函数,选用硬阈值函数和固定阈值的方法处理小波系数。结果表明,自适应滤波方法和小波变换很好地去除了膛线干扰信号和系统噪声,提取出了缺陷信号。 When defects of gun barrel are tested by use of magnetic flux leakage (MFL) method, because of the existence of rifles in barrel inner surface, except for the defect signals, there existed system noises and rifle interference signals in MFL signals. The adaptive filter method and wavelet transform were respectively used to eliminate rifle interference signals and system noises, and their principles were introduced. In simulation experiment, weight value learning algorithm of adaptive filter made use of least mean square algorithm, and the raw input and the reference input signals were from two different sensors. The second-order spline wavelet was chosen as wavelet function, and hard-thresholding function and fixed threshold value were adopted to process wavelet coefficients. The result indicated that the system noises and the rifle interference signals can be effectively eliminated by adaptive filter and wavelet transform, and the defect signals can be extracted.
出处 《火炮发射与控制学报》 北大核心 2008年第1期77-80,共4页 Journal of Gun Launch & Control
基金 国家自然科学基金项目资助(50175109)
关键词 材料检测与分析技术 漏磁检测 自适应滤波 小波变换 去噪 膛线干扰 materials examination and analysis magnetic flux leakage testing adaptive filter wavelet transform de-noising rifle interfere
  • 相关文献

参考文献1

二级参考文献7

  • 1Zhang Qinghua, Benveniste A. Wavelet networks[ J ]. IEEE Transactions NN, 1992, 3(6) : 889 - 898.
  • 2Haueisen J, Unger R, Beuker T, et al. Evaluation of inverse algorithms in the analysis of magnetic flux leakage data[ J ]. IEEE Transactions on Magnetics, 2002, 38(3) : 1481 - 1488.
  • 3Ramuhalli P, Udpa L, Udpa KS. Electromagnetic NDE signal inversion by function-approximation neural networks [ J ]. IEEE Transactions on Magnetics, 2002, 38(6) : 3633 - 3642.
  • 4Ramuhalli P, Udpa L, Udpa SS. Neural network-based inversion algorithms in magnetic flux leakage nondestructive evaluation[ J ].Journal of Applied Physics, 2003, 93(10) : 8274 - 8275.
  • 5Hwang K, Mandayam S, Udpa KS, et al. Characterization of gas pipeline inspection signals using wavelet basis function neural networks[ J ]. NDT&E International, 2000, 33 : 531 - 545.
  • 6Minkov D, Shoji T. Method for sizing of 3-D surface breaking flaws by leakage flux[ J ]. NDT&E International, 1998, 31(5) : 317 - 324.
  • 7盛景泉,付梦印,刘永信.采用小波神经网络的捷联惯导系统静基座快速初始对准[J].内蒙古大学学报(自然科学版),2003,34(4):468-471. 被引量:5

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部