期刊文献+

基于自适应同步的混沌系统参数辨识方法的研究 被引量:2

On parameter identification methods of chaotic system based on adaptive synchronization
下载PDF
导出
摘要 利用混沌系统的动力学特性对参数极其敏感的特点,以驱动响应同步结构为框架,设计了与同步误差有关的二次型指标函数,采用优化方法对参数进行自适应调节,直到同步误差最小,即实现混沌同步.该方法实现了参数未知混沌系统的参数辨识和自适应同步。为了研究参数收敛速度,对准高斯牛顿法、Hook-Jeeves方法(又名模式搜索法)和共轭梯度法等三种优化方法进行了对比研究.对具有两个未知参数的离散Hénon系统和连续Lorenz系统的仿真研究表明,基于共轭梯度的参数调节方法参数收敛速度最快,可以应用于混沌保密通信的解密. Chaotic dynamics is sensitively dependent on the parameters, which is used for parameters identification and chaos synchronization. The drive response structure is employed, and the parameters of response system are adaptively adjusted to minimize synchronization error according to the predefined quadric index function and the corresponding optimizing methods. The unknown parameters of the drive system are identified and chaos synchronization between drive system and response system is achieved by the proposed method. The control experiments with quasi Gauss-Newton method, Hook-Jeeves method and conjugate gradient method are carried out. Discrete Henon system and continuous Lorenz system with two unknown parameters are used as simulation examples, and the simulation results show that the conjugate gradient method possesses better performance, which can be further used to decode chaotic shift key secure communication.
出处 《量子电子学报》 CAS CSCD 北大核心 2008年第2期213-220,共8页 Chinese Journal of Quantum Electronics
基金 陕西省自然科学基金资助(2007F017) 中国博士后基金资助(20060390318)
关键词 量子光学 混沌同步 参数辨识 准高斯-牛顿法 Hook—Jeeves方法 共轭梯度法 quantum optics chaos synchronization parameter identification quasi Gauss-Newton method Hook-Jeeves method conjugated gradient method
  • 相关文献

参考文献13

二级参考文献21

  • 1闵富红,王执铨.关于耦合混沌系统完全同步的参数选择[J].控制理论与应用,2004,21(6):935-940. 被引量:8
  • 2方锦清.非线性系统中混沌控制方法、同步原理及其应用前景(二)[J].物理学进展,1996,16(2):137-202. 被引量:117
  • 3Pecora L M, Carroll T L. Synchronization in chaotic systems[J]. Physical Review Letters, 1990, 64 (8) : 821-824
  • 4Lu J H, Chen G R, Zhang S C. Dynamical analysis of anew chaotic attractor coined [J]. Int J of Bifurcation and chaos,2002,12(5):1001-1015.
  • 5Chen S H, Yang Q, Wang C P. Impulsive control and synchronization of unified chaotic system[J]. Chaos,Solitons and Fractals, 2004,20 (4) : 751-758.
  • 6Lu J H, Chen G R. A new chaotic attractor coined[J].Int J of Bifurcation and Chaos, 2002,12 (3) : 659-661.
  • 7Vanecek A, Celikovsky S. Control systems: From linear analysis to synthesis of chaos [M]. London: Pretice-Hall, 1996.
  • 8Lu J A, Wu X Q, Lti J H. Synchronization of a unified chaotic system and the application in seeure communication [J]. Physics Letters A, 2002,305: 365-370.
  • 9Jolly K, John, Amritkar R E. Synchronization of unstable orbits using adaptive[J]. Physica E, 1994,49:4843-4848.
  • 10He R, Vaidya P G. Analysis and synthesis of synchronous periodic and chaotic system[J]. Physical Review A, 1992,46(12) : 7387-7392.

共引文献57

同被引文献12

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部