期刊文献+

铝合金的激光熔覆修复 被引量:39

Laser Cladding Reparation of Aluminum Alloy
原文传递
导出
摘要 通过对航空航天用超高强7050铝合金进行激光熔覆修复的实验研究,探讨了激光熔覆修复铝合金的可行性。实验采用5kWCO2连续激光器作为加热源,在惰性气体保护隔离箱中,对7050铝合金的板状试样进行了激光单道熔覆、多道搭接熔覆、多层堆积熔覆的实验研究。得到优化的激光熔覆工艺参数,制备了激光熔覆修复试样,并观察了不同激光熔覆区的微观组织以及拉伸断口形貌。实验结果表明,优化激光熔覆工艺参数是:激光功率密度为1.84×104~2.12×104W/cm2,扫描速度为5mm/s,送粉量为1.8~2.4g/min,搭接宽度为1.5mm。采用优化工艺参数熔覆,基底和熔覆区形成良好的冶金结合,熔覆后工件表面平整且基底没有变形。同时,采用干燥的氩气加强对激光熔池的保护可以有效消除铝合金激光熔覆中的缺陷。 Experiment of repairing aluminum (AI) alloy 7050 (AI 7050) by laser-cladding techniques was investigated. A 5 kW CO2 laser was used as the heat source. Experiemnts of single trace cladding, multi-trace overlapping cladding, and multi-layer cladding were performed on the AI 7050 plates shielded in a closed box with inert gas. A set of optimized laser-cladding repairation parameters for damaging AI 7050 samples were found, and the microstructures in different cladding regions and micro-appearances of fracture surface were studied. The optimized laser-cladding repairation parameters were laser power of 1.84 × 10^4- 2.12× 10^4 W/cm^2 , scanning speed of 5 mm/s, powder feeding rate of 1.8 - 2.4 g/min, and overlapping width of 1.5 mm. With the optimized repairing parameters, the cladding zone displayed a superior metallurgical bonding with its substrate, the repaired sample surface appeared smooth without any substrate distortion, and the defect formation in the cladding zone was effectively prevented by strengthening shielding of the molten pool with dry argon.
出处 《中国激光》 EI CAS CSCD 北大核心 2008年第2期303-306,共4页 Chinese Journal of Lasers
基金 西北工业大学国家重点凝固实验室对外开放基金资助项目
关键词 激光技术 激光熔覆 修复 显微组织 铝合金 laser technique laser cladding repairing microstructure AI alloy
  • 相关文献

参考文献12

  • 1Leo Sexton. Laser cladding: repairing and manufacturing metal parts and tools [C]. SPIE, 2003, 4876:462-469
  • 2Jianli Song, Qilin Deng, Changyuan Chen et al.. Rebuilding of metal components with laser cladding forming [J]. Applied Surface Science, 2006, 252(22):7934-7940
  • 3Dae-Young Kim, Jong-Hyun Hwang, Kwang-Soo Kim et al.. A study on fusion repair process for a precipitation hardened IN738 Ni-based superalloy [J]. Journal of Engineering for Gas Turbines and Power, 2000, 122(3):457-461
  • 4L. Sexton, S. Lavin, G. Byrne et al.. Laser cladding of aerospace materials [J]. Journal of Materials Processing Technology, 2002, 122(1):63-68
  • 5Yali Gao, Cunshan Wang, Man Yao et al.. The resistance to wear and corrosion of laser-cladding Al2O3 ceramic coating on Mg alloy [J]. Applied Surface Science, 2007, 253:5306-5311
  • 6J. Grum, J. M. Slabe. A comparison of tool-repair methods using CO2 laser surfacing and arc surfacing [J]. Applied Surface Science, 2003, 208:424-431
  • 7E. Capello, D. Colombo, B. Previtali. Repairing of sintered tools using laser cladding by wire [J]. Journal of Materials Processing Technology, 2005, 164-165:990-1000
  • 8Jian Gao, Fanet Folkes, Oguzhan Yilmaz et al.. Investigation of a 3D non-contact measurement based blade repair integration system [J]. Aircraft Engineering and Aerospace Technology: An International Journal, 2005, 77(1):34-41
  • 9Jianming Zheng, Zhongguo Li, Xi Chen. Worn area modeling for automating the repair of turbine blades [J]. Int. J. Adv. Manuf. Technol., 2006, 29:1062-1067
  • 10刘红宾,王存山,高亚丽,迟丽娜.镁合金表面激光熔覆Cu-Zr-Al非晶复合涂层[J].中国激光,2006,33(5):709-713. 被引量:29

二级参考文献37

共引文献55

同被引文献354

引证文献39

二级引证文献212

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部