摘要
Given a positive function F on S^n which satisfies a convexity condition, we introduce the r-th anisotropic mean curvature Mr for hypersurfaces in R^n+1 which is a generalization of the usual r-th mean curvature Hr. We get integral formulas of Minkowski type for compact hypersurfaces in R^n+1. We give some new characterizations of the Wulff shape by the use of our integral formulas of Minkowski type, in case F=1 which reduces to some well-known results.
Given a positive function F on S^n which satisfies a convexity condition, we introduce the r-th anisotropic mean curvature Mr for hypersurfaces in R^n+1 which is a generalization of the usual r-th mean curvature Hr. We get integral formulas of Minkowski type for compact hypersurfaces in R^n+1. We give some new characterizations of the Wulff shape by the use of our integral formulas of Minkowski type, in case F=1 which reduces to some well-known results.
基金
Tianyuan Fund for Mathematics of NSFC (Grant No.10526030)
Grant No.10531090 of the NSFC
Doctoral Program Foundation of the Ministry of Education of China (2006)