期刊文献+

基于子话题分治匹配的新事件检测 被引量:26

New Event Detection Based on Division Comparison of Subtopic
下载PDF
导出
摘要 新事件检测是话题检测与跟踪领域的一项重要研究,其任务是实时监控新闻报道流并从中识别新话题.现有方法将话题和报道描述为单一结构的特征向量进行匹配,造成子话题间互为噪声并形成错误语义,从而误导新话题的识别.针对这一缺陷,文中提出基于子话题分治匹配的新事件检测方法,将话题和报道划分为不同子话题,根据相关子话题的比例关系和分布关系建立新话题识别模型.实验在TDT4和TDT5中获得显著改进,最小检测错误代价为0.4061,相应漏检率为0.1859. New event detection is an important research in the field of topic detection and tracking, and its task is real-time monitoring the stream of news stories and identifying the new topics in it. Current methods match the topics and stories as they are single-structured vectors of terms, which make the subtopics become noises of each other, and these noises often describe wrong semantics, by which the identification of new topics would be misled. In response to this defect, this paper proposes a new event detection method based on division comparison of subtopics, which divided each topic and story into different subtopics and identified new topic basing on the proportion and distribution relations of the relevant subtopics. This method achieves substantial improvement on TDT4 and TDTS, whose minimum cost of detection error is 0. 4061 and missing probability is 0. 1859.
出处 《计算机学报》 EI CSCD 北大核心 2008年第4期687-695,共9页 Chinese Journal of Computers
基金 国家自然科学基金(60435020 60503072) 国家"八六三"高技术研究发展计划探索类专题项目(2006AA01Z145)资助
关键词 新事件检测 话题检测与跟踪 子话题 new event detection topic detection and tracking subtopic
  • 相关文献

参考文献18

  • 1骆卫华,刘群,程学旗.话题检测与跟踪技术的发展与研究//全国计算语言学联合学术会议(JSCL-2003)论文集.北京:清华大学出版社.2003:560-566.
  • 2Allan J, Papka R, Lavrenko V. On line new event detection and tracking//Proceedings of the SIGIR'98: 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 1998, 37-45
  • 3Allan J. Topic Detection and Tracking: Event based Information Organization. USA: Kluwer Academic Publishers, 2002: 1-16
  • 4Yang Y, Carbonell J, Brown R et al. Learning approaches for detecting and tracking news events. IEEE Intelligent Systems Special Issue on Applications of Intelligent Information Retrieval, 1999, 14(4): 32-43
  • 5Yang Y, Pierce T, Carbonell J. A study on retrospective and on-line event detection//Proceedings of the SIGIR 98. Melbourne, Australia, 1998:28-36
  • 6Allan J, Lavrenko V, Malin D et al. Detections, bounds, and timelines: Umass and TDT-3//Proceedings of the Topic Detection and Tracking Workshop (TDT-3). Vienna, VA, 2000:167-174
  • 7Zhang K, Li J, Wu G. New event detection based on indexing-tree and named entity//Proceedings of the SIGIR-2007. Amsterdam, Netherlands, 2007:215-222
  • 8Yang Y, Zhang J, Carbonell J et al. Topic conditioned novel ty detection//Proceedings of the 8th ACM SIGKDD International Conference. Edmonton, Canada: ACM Press, 2002: 688-693
  • 9Juha M, Helena A M, Marko S. Applying semantic classes in event detection and tracking//Proceedings of the International Conference on Natural Language Processing (ICON 2002). Turku, Finland, 2002:175-183
  • 10Juha M, Helena A M, Marko S. Simple semantics in topic detection and tracking. Information Retrieval, 2004, 7(3-4):347-368

共引文献1

同被引文献212

引证文献26

二级引证文献166

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部