期刊文献+

基于宽带检测的局放脉冲波形快速特征提取技术 被引量:44

Fast feature extraction technique for PD pulse shape based on wideband detection
下载PDF
导出
摘要 根据电工设备绝缘存在多局放的工况,提出研制基于单个脉冲的局放宽带检测与模式识别在线监测系统。并指出研制该系统需要解决脉冲群快速分类这一关键技术,其由脉冲波形的快速特征提取以及基于波形特征的快速聚类分析组成。本文针对100Ms/S采样率获取的宽带脉冲波形-时间序列,提出分别使用幅值参数法、等效时频法和时频熵法对局放脉冲波形的特征参数进行提取。在对人工设置的多局放源产生的脉冲群数据进行波形特征提取后,使用模糊聚类对脉冲群波形特征提取结果进行了对比分析。结果表明:三种波形特征提取方法均能在一定程度上很好地分离干扰源而提取出局放数据。GIS母线尖刺缺陷的试验数据处理同样证实了该技术的有效性和可行性。这为研制基于单个脉冲的宽带局放检测与模式识别在线监测系统提供了实用的脉冲波形快速特征提取技术。 According to multi-PDs phenomenon in insulation of high voltage electrical equipments, a novel PD detection and pattem recognition system developed by wide-band technology based on a single pulse shape is proposed in this paper. To develop this system, the fast grouping technique for pulse sequence should be used, which is composed of fast feature extraction technology and clustering analysis method for PD pulse shape. Focus is made on AmplitudeParameters, Equivalent Time-Frequency and Time-Frequency Entropy methods, which are used to make feature extraction for PD pulse shape-time sequence detected by wide-band technology with a sampling rate of 100Ms/S. After feature extraction made for noised multi-PD data, the results are compared by using fuzzy clustering method. The results show that those methods do a good separation for PD pulses with the same characteristics to a certain extent, respectively. And the analysis result of noised PD date of a gas insulated switch (GIS) shows that the feature extraction methods are effective and feasible for multi-PD pulses sequence grouping in practice. This provides a good method to make feature extraction for pulse shapes to develop the multi-PDs detection and pattern recognition system.
出处 《电工电能新技术》 CSCD 北大核心 2008年第2期21-25,76,共6页 Advanced Technology of Electrical Engineering and Energy
关键词 局部放电 宽带检测 脉冲波形 特征提取 在线监测 PD wide-band detection pulse shape feature extraction on-line monitoring
  • 相关文献

参考文献10

  • 1A Contin, A Cavallini, G C Montanari, et al. Digital detection and fuzzy classification of partial discharge signals [J]. IEEE Trans. on Dielectrics and Elec. Insulation, 2002, 9(2): 335-348
  • 2A Cavallini, G C Montanari, A Contin, et al. A new approach to the diagnosis of solid insulation systems based on PD signal inference [J]. IEEE Elec. Insulation Magazine, 2003, 19(2) : 23-30.
  • 3A CavaUini, G C Montanari, F Puletti. A fuzzy logic algorithm to detect electrical trees in polymeric insulation systems [ J ]. IEEE Trans. on Dielectrics and Elect. Insulation, 2005, 12(6) : 1134-1144.
  • 4M Caciari, A Contin, G C Montanari, et al. Identification and separation of two concurrent partial discharge phenomena [A]. IEEE Annual Report-Conference on Elec. Insulation and Dielectric Phenomena [C]. Millbrae, CA, USA: IEEE CS Press, 1996. 476-479.
  • 5A Contin, A Cavallini, G C Montanari, et al. Artificial intelligence methodology for separation and classification of partial discharge signals [ A]. Conference on Elec. Insulation and Dielectric Phenomena [ C ]. Victoria, BC, Canada: IEEE CS Press, 2000. 522-526.
  • 6A Cavallini, M Conti, G C Montanari. Indexes for the recognition of insulation system defects derived from partial discharge measurements [ A ]. Conference Record of the 2002 IEEE International Symposium on Elec. Insulation [ C ].Boston, MA, USA: IEEE CS Press, 2002. 511-515.
  • 7Pal NR, Bezdek JC. On clustering for the fuzzy c-means model [J]. IEEE Trans. FS, 1995, 3(3) : 370-379.
  • 8郝艳捧,王国利,贾志东,蒋雄伟,谢恒.单个局部放电脉冲测量系统[J].电工电能新技术,2001,20(4):31-35. 被引量:9
  • 9郑重,谈克雄,王猛,吴浩.基于脉冲波形时域特征的局部放电识别[J].电工电能新技术,2001,20(2):20-24. 被引量:37
  • 10王国利,郝艳捧,李彦明.电力变压器局部放电检测技术的现状和发展[J].电工电能新技术,2001,20(2):52-57. 被引量:131

二级参考文献18

  • 1[1]IEC Standard Publication 270. Partial discharge measurements [S] . Second Edition, 1981.
  • 2[2]T Brosehe, et al. Novel characterization of PD signals by real-time measurement of pulse parameters[J]. IEEE Trans. on Diel. and Elect. Insul.,1999, 6(1): 51-59.
  • 3[3]F H Kreuger, et al. Evaluation of discharge damage by fast transient detection and statistical analysis[A]. CIGRE [C]. Paris, 1994, (15): 106-110.
  • 4[4]T R Blackburn, et al. Advanced techniques for characterization of partial discharges [ A ]. CIGRE[C]. Paris, 1994, (15): 102-105.
  • 5[5]Philippe Carre, et al. Denoising of the uterine EHG by an undecimated wavelet transform [ J ]. IEEE Trans. on Biomedical Engineering, 1998, 45 (9):1104-1113.
  • 6[6]M Kawada, et al. Detection of wide-band E-M signals emitted from partial discharge occurring in GIS using wavelet transform [J]. IEEE Trans. on Power Delivery, 2000, 15(2): 467-471.
  • 7[7]Peter Morshuis. Assessment of dielectric degradation by ultra-wide-band PD detection[ J]. IEEE Trans. on Diel. and Elect. Insul. , 1995, 2(5): 744-760.
  • 8[8]M Pompili, et al. Early stage of negative PD in dielectric liquids [J]. IEEE Trans. on Diel. and Elect. Insul. , 1995, 2(4): 602-613.
  • 9[9]M Pompili, et al. Simultaneous ultrawide and narrowband detection of PD pulses in dielectric liquids[ J]. IEEE Trans. on Diel. and Elect. Insul.,1998, 5(3): 402-407.
  • 10[10]M Pompili, et al. Phase relationship of PD pulsesin dielectric liquids under ac conditions [ J ]. IEEE Trans. on Diel. and Elect. Insul. , 2000, 7(1):113-117

共引文献172

同被引文献423

引证文献44

二级引证文献372

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部