期刊文献+

图着色问题的新遗传算法 被引量:9

Novel genetic algorithm for the graph coloring problem
下载PDF
导出
摘要 针对遗传算法求解图着色问题需多次产生初始种群的问题,提出了一种改进算法.该算法采用比较机制,淘汰不可行的基因,然后使用动态的适应度函数,使得有效个体以较大的概率存活到下一代种群中,从而达到无需多次产生初始种群的目的.与传统框架下的算法相比,新算法求得最优解的时间至少缩短了51%,且具有从一个局部最优解快速跳到下一个局部最优解,最终收敛到全局最优解的优点. Generic genetic algorithms need generate initial population iteratively for solving the coloring problem. Based on this problem, an improved algorithm is presented. The novel algorithm adopts a comparative mechanism to eliminate the unfeasible genes, and gives the valid individual a greater probability to survive to the next generation by using the dynamic fitness function. Thus, the proposed algorithm avoids the repetitious production of the initial population. Compared with the algorithms under the traditiona[ architecture, the proposed a[gorithm can shorten the time of finding the optimal solution at least by up to 51 percent. Moreover, the novel algorithm has the advantages of jumping from a local optimal solution to next one quickly and converging to the global optimal solution in the end.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2008年第2期309-313,共5页 Journal of Xidian University
基金 国家自然科学基金资助(60374063)
关键词 图着色问题 遗传算法 局部搜索 全局收敛 graph coloring problem genetic algorithm local search global convergence
  • 相关文献

参考文献5

  • 1Eiben A E, Vender Hauw J K, Van Hemert J I. Graph Coloring with Adaptive Evolutionary Algorithms [J]. Journal of Heuristics, 1996, 4(1) : 16-24.
  • 2Fleurent C, Ferland J A. Genetic and Hybrid Algorithms for Graph Coloring [J]. Annals of Operations Research, 1995, 63(3): 437-463.
  • 3Morgenstern C. Distributed Coloration Neighborhood Search [J]. Discrete Mathematic and Theoretical Computer Science, 1996, 26(5): 335-358.
  • 4杨淑媛,刘芳,焦李成.一种基于量子染色体的遗传算法[J].西安电子科技大学学报,2004,31(1):76-81. 被引量:45
  • 5Back T. Evolutionary Algorithms in Theory and Practice [M]. New York: Oxford University Press, 1996: 21-28.

二级参考文献12

  • 1Muldenbein H. Parallel Genetic Algorithms in Combinatorial Optimization[A]. Computer Science and Operation Research--New Developments[M]. New York: Pergamon Press, 1992. 441-453.
  • 2Grefenstette J J, Coped R, Rosmaita B, et al. Genetic Algorithms for the Traveling Salesman Problem[A]. Proceedings of the First International Conference on Genetic Algorithms and Their Applications[C]. NJ: Lawrence Earlbaum Associate, 1985. 160-168.
  • 3Kristinsson K, Dumont G A. System Identification and Control Using Genetic Algorithms[J]. IEEE Trans on Sys, Man and Cybernetic,1992, 22(5): 1033-1046.
  • 4Holland J H. Genetic Algorithms and Classifier Systems: Foundations and Their Applicaitons[A]. Proceedings of the Second International Conference on Genetic Algorithms[C]. Hillsdale: Lawrence Erlbaum Associates, 1987. 82-89.
  • 5Krishnakumar K, Goldberg D E. Control System Optimization Using Genetic Algorithms[J]. Journal of Guidance, Control and Dynamics, 1992, 15(3): 735-740.
  • 6Rudolph G. Convergence Analysis of Canonical Genetic Algorithms[J]. IEEE Trans on Neural Networks, 1994, 5(1): 96-101.
  • 7Stumpf J D, Feng X, Kelnhofer R W. An Enhanced Operator-oriented Genetic Search Algorithm[A]. The First IEEE Conference on Evolutionary Computation[C]. Orlando; IEEE Press, 1994. 235-238.
  • 8Hesser J, Manner R. Towards an Optimal Mutation Probability for Genetic Algorithms[A]. Proceedings of the First Conference on Parallel Problem Solving from Nature[C]. Dortmund: Springer, 1990. 23-32.
  • 9Srinivas M, Patnail L M. Adaptive Probabilities of Crossover and Mutation in Genetic Algorithms[J]. IEEE Trans Syst, Man and Cybem, 1994, 24(4): 656-667.
  • 10Hey T. Quantum Computing: an Introduction[J]. Computing & Control Engineering Journal, 1999, 10(3) : 105-112.

共引文献44

同被引文献64

引证文献9

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部