期刊文献+

一类具有转移边条件微分算子的自伴性 被引量:1

Self-adjointness of a Class of Differentia Operators with Transforming Boundary Conditions
下载PDF
导出
摘要 微分算子谱的研究,在热力学中具有很广泛的应用,本文构建了一个新的H ilbert空间,并在这个空间上讨论了一类具有转移边条件的内部奇异微分算子的自伴性. The research of spectrum of differential operator is extensively applied in the thermodynamics. In this paper, we proved the self - adjointness of a class of differential operators with transferming boundary conditions in a new Hilbert space.
出处 《湖北民族学院学报(自然科学版)》 CAS 2008年第1期25-27,共3页 Journal of Hubei Minzu University(Natural Science Edition)
基金 湖北民族学院青年项目
关键词 转移边条件 微分算子 自伴性 transforming boundary conditions differentiall operator self - adjointness
  • 相关文献

参考文献9

  • 1王爱平,孙炯.一类具有转移条件的微分算子的自共轭性[J].内蒙古大学学报(自然科学版),2005,36(6):618-621. 被引量:13
  • 2王高雄,周之铭.常微分方程(第2版)[M].北京:高等教育出版社,1996.
  • 3尚在久 朱瑞英.(-∞,∞)上对称微分算子的自伴域.内蒙古大学学报:自然科学版,1986,17(1):17-28.
  • 4Richard Lavine. The eigenvalues gap for one dimensional convex potentials Proceeding[ J]. 2003,124(4) :815 -821.
  • 5Binding P A, Browne Patrick J. Oscillation theory for indefinite Strum - Liouville problem with eigenparameter dependent conditions[ J]. Proc Roy Soc Edinburg Sect, 1997,127A(6 ) : 1123 - 1136.
  • 6Kobayashi M. Eigenvalues of discontinuous Sturm - Liouville problems with symmetric Potentials [ J ]. Computers Math Applic, 1989,18 (4) :357 - 364.
  • 7Mukhtarov O Sh, Yakubov S. Problems for ordinary differential equations with transmission Conditions [ J ]. Applicable Analysis, 2002,81 : 1 033 - 1064.
  • 8Fulton C T. Two- point boundary value problems with eigenvalue parameter contained in the boundary conditions[ J]. Proc Roy Soc Edin, 1997, 77A :293 - 308.
  • 9向会立.Sturmm-liouville问题前两个特征值间距的估计[J].湖北民族学院学报(自然科学版),2007,25(2):148-150. 被引量:4

二级参考文献13

  • 1Mukhtarov O. Sh., Discontinuous Boundary-value Problem with Spectral Parameter in Boundary Conditions [J].Turkish Journal of Mathematics,1994,18:183~192.
  • 2Demirci M, Akdo gan Z, Mukhtarov O.Asymptotic Behavior of Eigenvalues and Eigenfunctions of One Discontinuous Boundary-value Problem [J]. International Journal of Computational Cognition,2004,2(3):101~113.
  • 3Mukhtarov O. Sh., Demir H., Coerciveness of the Discontinuous Initial-boundary value Problem for Parabolic Equations [J]. Israel Journal of Mathematics,1999,114:239~252.
  • 4Titeux I, Yakubov Ya. Completeness of Root Functions for Thermal Conduction in a Strip with Piecewise Continuous Coefficients [J]. Math. Models Methods Appl. Sc., 1997,7(7):1035~1050.
  • 5Likow A V, Mikhailov Yu A.The theory of Heat and Mass Transfer [M]. Qosenergaizdat,1963(Russian).
  • 6Voitovich N N,Katsenelbaum B Z,Sivov A N.Generalized Method of Eigen-vibration in the Theory of Diffraction [M]. Nauka, Moskov, 1997(Russian).
  • 7Zettl A.Sturm-Liouville problem. Spectral Theory and Computational Methods of Sturm-Liouville Problem [M].Marcel Dekker, Berlin, 1997,1~104.
  • 8Roger Chen.Gap estimate of schrodinger operator[J].Pac J Math,1997,178(2):225-239.
  • 9Miklos Horvath.On the first two eigenvalues of Sturmm-Liouville operators[J].Proceedings,2003,131(4):1 215-1 224.
  • 10Richard Lavine.The eigenvalue gap for one-dimensional convex potentials[J].Proceedings of the American Mathematical Society,1994,121(3):815-821.

共引文献20

同被引文献6

  • 1向会立.Sturmm-liouville问题前两个特征值间距的估计[J].湖北民族学院学报(自然科学版),2007,25(2):148-150. 被引量:4
  • 2Miklos Horvath. on the first two eigenvalucs of Sturm - Liouville operators [ J ]. Proceedings,2003,131 (4) : 1 215 - 1 224.
  • 3Richard Lavine. The eigenvalue gap for one -dimensional convex potentials[ J]. Proceedings of the American Mathematical Society, 1994,121 (3) :895 -902.
  • 4Richard Lavine.'The eigenvalues gap for one dimensional convex potentials[ J]. Proceeding,2003,124(4) :815 -821.
  • 5Kobayashi M. Eigenvalues of discontinuous Sturm - Liouville problems with symmetric potentials [ J ]. Computers Math Applic, 1989,18 ( 4 ) : 357 - 364.
  • 6Benguria R. A note on the Gap between the first two eigenvalue for theSchrodinger operator[ J ]. J Phys A, 1986 ( 19 ) :477 -478.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部