期刊文献+

基于遗传聚类算法的离群点检测 被引量:1

Outlier detection based on genetic algorithm for clustering
下载PDF
导出
摘要 离群点检测是数据挖掘一个重要内容,它为分析各种海量的、复杂的、含有噪声的数据提供了新的方法。对离群数据挖掘几类主要的方法进行了分析和评价,并在此基础上了提出了一种基于遗传聚类的离群点检测算法。该算法结合了遗传算法全局搜索的优点和K-均值方法局部收敛速度快的特点,取得较好效果。实验验证该算法很好地检测到数据集中的离群点,同时还完成了数据集的聚类。具有较好的实用性。 Outlier detection, as an important aspect of data mining, provides a new method for analyzing various quantitative,complex and noisy data.In this paper,authors analyze and evaluate several major methods of the outlier data mining,and propose a new outlier detection algorithm which is based on an genetic algorithm for clustering.By integrating with global searching of the genetic algorithm and the good local convergence rate of the K-means algorithm,this algorithm gets a better result.Experiments show that this algorithm not only can detect the outliers in the dataset,but also complete the clustering of the dataset.So it has a good practicality.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第11期155-157,共3页 Computer Engineering and Applications
基金 安徽省教育厅资助科研课题(the Research Project of Department of Education of Anhui Province China under Grant No.2005KJ056)
关键词 离群点检测 数据挖掘 遗传算法 聚类 K-均值算法 outlier detection data mining genetic algorithm clustering K-means algorithm
  • 相关文献

参考文献5

  • 1Tan P N,Steinbach M,Kumar V.Introduction to data mining[M].北京:人民邮电出版社,2006.
  • 2Han Jiawei,Micheline Kamber.Data mining:Concepts and techniques[M].北京:机械工业出版社,2001.
  • 3Maiywan S.Kashyap R L.A cluster based approach to robust regression and outlier detection[C]//Proceedings of 1994 IEEE International Conference on Systems,Man and Cybernetics.New York: IEEE, 1994,3 : 2561-2565.
  • 4Ali A,Antonio G E.Bad data identification when using ampere measurements[J].IEEE Trans on Power System, 1997,12(2) :831-837.
  • 5Maulik U,Bandyopadhyay S.Genetic algorithm-based clustering technique[J].Pattem Recognition, 2000,33 (9) : 1455-1465.

共引文献2

同被引文献14

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部