摘要
Using 2 high-speed cameras, we have recorded 14 negative cloud-to-ground (CG) lightning flashes, half of which are natural and the others are artificially triggered. The two-dimensional (2D) propagation speed of different type leaders and the luminosity of lightning channel are analyzed in detail. Bidirectional leader processes are observed during the initial processes of two altitude triggered negative lightning (ATNL) flashes. The analysis shows: the propagation speed of the upward positive leader (UPL) before the initiation of the downward negative leader (DNL) is at the order of 10^4-10^5 m s-1; the UPL can be intensified by the initiation and development of the DNL in the way that the luminosity is enhanced and the speed is sped up; after initiation, the DNL in one ATNL flash propagates downward three times intermittently with interval of about 1 ms, while that in the other ATNL flash propagates downward continuously with a speed at the order of 10^5 m s^-1. In the five classical triggered negative lightning (CTNL) flashes, the propagation speeds of the UPLs vary between 0.35×10^5 and 7.71×10^5 m s-1, and the variations of their luminosities and speeds are quite complex during the development processes. Among the four observed natural negative lightning flashes occurred on the land, three have only one return stoke (RS) each and all of their DNLs have many branches with an average speed at the order of 10^5 m s-l; while the another one has 13 RSs. In the CG flash with 13 RSs, the DNL before the first RS has no obvious branch below 1.4 km above the ground, and its speed ranges from 2.2×10^5 to 2.3×10^6 m s-1 between the heights of 0.7 and 1.4 km and exceeds 3.9×10^6 m s-1 below 0.7 km; preceding the 4th RS, an attempted leader is observed with a speed ranging from 1.1× 10^5 to 1.1×10^6 m s-1 between 0.8 and 1.5 km. As for the three observed natural negative lightning flashes occurred on the sea, each has only one RS, and each DNL preceding the RS has a few branches, two of which have an average propagation speed at the order of 10^5 m s-1, and the other of 10^6 m s-1, respectively. All the DNLs contained in the observed natural negative lightning flashes, except the attempted leader, propagate with gradually increasing luminosity and increasing speed in whole.
Using 2 high-speed cameras, we have recorded 14 negative cloud-to-ground (CG) lightning flashes, half of which are natural and the others are artificially triggered. The two-dimensional (2D) propagation speed of different type leaders and the luminosity of lightning channel are analyzed in detail. Bidirectional leader processes are observed during the initial processes of two altitude triggered negative lightning (ATNL) flashes. The analysis shows: the propagation speed of the upward positive leader (UPL) before the initiation of the downward negative leader (DNL) is at the order of 10^4-10^5 m s-1; the UPL can be intensified by the initiation and development of the DNL in the way that the luminosity is enhanced and the speed is sped up; after initiation, the DNL in one ATNL flash propagates downward three times intermittently with interval of about 1 ms, while that in the other ATNL flash propagates downward continuously with a speed at the order of 10^5 m s^-1. In the five classical triggered negative lightning (CTNL) flashes, the propagation speeds of the UPLs vary between 0.35×10^5 and 7.71×10^5 m s-1, and the variations of their luminosities and speeds are quite complex during the development processes. Among the four observed natural negative lightning flashes occurred on the land, three have only one return stoke (RS) each and all of their DNLs have many branches with an average speed at the order of 10^5 m s-l; while the another one has 13 RSs. In the CG flash with 13 RSs, the DNL before the first RS has no obvious branch below 1.4 km above the ground, and its speed ranges from 2.2×10^5 to 2.3×10^6 m s-1 between the heights of 0.7 and 1.4 km and exceeds 3.9×10^6 m s-1 below 0.7 km; preceding the 4th RS, an attempted leader is observed with a speed ranging from 1.1× 10^5 to 1.1×10^6 m s-1 between 0.8 and 1.5 km. As for the three observed natural negative lightning flashes occurred on the sea, each has only one RS, and each DNL preceding the RS has a few branches, two of which have an average propagation speed at the order of 10^5 m s-1, and the other of 10^6 m s-1, respectively. All the DNLs contained in the observed natural negative lightning flashes, except the attempted leader, propagate with gradually increasing luminosity and increasing speed in whole.
基金
the National Natural Science Foundation of China under Grant No.40605004
the Ministry of Science and Tech.nology of China under Grant Nos.2004DEA71070 and GYHY2007622.