期刊文献+

基于ECC的Ad hoc组密钥协商协议 被引量:1

Ad hoc Group Key Agreement Protocol Based on ECC
下载PDF
导出
摘要 提出一种基于椭圆曲线加密体制的Adhoc组密钥协商协议,并给出了组成员加入/离开时的协商过程。采用ECC机制减少节点的计算量和存储量,并且用了很小密钥量提供了更大的安全性,所需带宽也明显减少。 Proposes an efficient Ad hoc key group agreement based on ECC, and presents the particular process of group agreement when a member joins or leavers the group. It has lower computational burden and storage requirements on the user side with using the ECC, and furthermore it provides greater security with fewer bits and need significantly less bandwidth.
作者 张妮 许春香
出处 《现代计算机》 2008年第3期34-35,44,共3页 Modern Computer
关键词 椭圆曲线加密体制(ECC) 组密钥协商协议 计算量 加入 离开 Elliptic Curve Cryptography(ECC) Ad Hoc Group Key Agreement Protocol Computation-Cost Joins Leaves
  • 相关文献

参考文献3

二级参考文献31

  • 1[2]V.Miller,Uses of elliptic curves in cryptography,Advances in Cryptology-CRYPTO' 85.LNCS218,Santa Barbara,Calif.,Springer-Verlag,1986,417-426.
  • 2[3]Multiprecision Integer and Rational Arithmetic C/C++ Library(MIRCAL),available at http://indigo.ie/~msoott/.
  • 3[4]A.Menezes,T.Okamnoto,S.Vanstone,Reducing elliptic curve logarithms to logarithms in a finitoe field.IEEE Trans.on Information Theory,1993,39(5),1639-1646.
  • 4[5]N.Koblitz,A Course in Number Theory and Cryptogralphy,2nd e7ition.Spring-Verlag.1994.Ch.6.
  • 5[6]N.Koblitz,Algebraic Aspects of Cryptography,Algorithms and Computation in Math.Editors:E.Becker,M.Bronstein,H.Cohen,3(1998),Berlin Heidelberg,Springer-Verlag,1998,Ch.6.
  • 6[7]IEEE P1363,Standard Specifications for Public-Key Cryptography,Ballot Draft.1999,Drafts available at http://indigo,ie/~msoott/.
  • 7[8]R.Schoof,Elliptic curves over finite fields and the computation of square roots modp.Math.Comp.,1985,44(170),483-494.
  • 8[9].T.Izu,J.kogure,M.Noro,K.Yokoyama,Efficient Implementation of Sehoof's Algorithm.Asi acrypt'98,Berlin Heidelberg,Springer-Verlag,1998,66-79.
  • 9[10]Lehmann,Maurer,Mueller,Shoup ,Counting the number of points on elliptic curves over finite fields of characteristic greater than three,Proc.1st Algorithmic Number Theory Symposinn (ANTS),Berlin Heidelberg,Springer-Verlag,1994,LNCS877,60-70.
  • 10[1]N.Koblitz,Elliptic curve cryptosystems,Mathematics of Computation,1987,45(177),203-209.

共引文献24

同被引文献9

  • 1卢开澄.计算机密码学[M].3版.北京:清华大学出版社,2003.
  • 2MOLVA Refik,PANNETRAT Alain.Scalable multicast security in dynamic groups[C] // Kent Ridge Digital Labs,Singapore.Proceedings of the 6th ACM conference on Computer and communications security.New York,NY USA:ACM Press,1999:101-112.
  • 3BURMESTER M,DESMEDT Y.A secure and efficient conference key distribution system[EB/OL].[2010-05-29].ftp://thebaine.sabotage.org/pub/mirrors/Advances%20in%20Cryptology/HTML/PDF/E94/275.PDF.
  • 4STEINER M,TSUDIK G,WAIDNER M.Key agreement in dynamic peer groups[J].IEEE.Transactions on Parallel and Distributed Systems,2000,11 (8):769-780.
  • 5KIM Y,PERRIG A,TSUDIK G.Tree based group key agreement[J].ACM Transactions on Information and System Security,2004,7 (1):60-96.
  • 6TAO Feng,WANG Yi-lin.MA Jian-feng.A Secure and Efficient Group Key Agreement for Ad hoc Networks[EB/OL].[2010-03-29].http://ieeexplore.ieee.org/search/searchresult.jsp?newsearch=true&queryText=A+Secure+and+Efficient+Group+Key+Agreement+for+Ad+hoc+Networks&x=32&y=10.
  • 7何成勇,李方伟.基于ECC的防欺诈门限签名方案[J].重庆邮电大学学报(自然科学版),2008,20(5):621-623. 被引量:1
  • 8YOU Lin ,SANG Yong-xuan College of Communication Engineering,Hangzhou Dianzi University,Hangzhou 310018,China.Effective generalized equations of secure hyperelliptic curve digital signature algorithms[J].The Journal of China Universities of Posts and Telecommunications,2010,17(2):100-108. 被引量:7
  • 9张方国,王常杰,王育民.GF(p)上安全椭圆曲线及其基点的选取[J].电子与信息学报,2002,24(3):377-381. 被引量:16

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部