期刊文献+

基于小波变换的Page-Test水声瞬态信号检测 被引量:5

Research on Page-Test Underwater Acoustic Transient Signal Detection Based on Wavelet Transform
下载PDF
导出
摘要 针对鱼雷、空投浮标、火箭助飞深弹等反潜武器入水瞬间产生的水声瞬态信号所具有的持续时间短、信噪比低、突发和不稳定等特点,以传统的Page-T est检测器为基础,提出了一种新的水声瞬态信号检测方法.该方法首先对采集的水声信号进行小波去噪,去除信号中的随机频谱成分,提高信噪比,然后利用Page-T est检测器进行检测.仿真结果表明,该方法可在低信噪比条件下有效地提取出瞬态信号的起始位置,其处理效果明显优于传统的Page-T est检测方法. Aiming at the characteristics of underwater acoustic transient signals emitted from antisubmarine weapons dropping into water (torpedo, aerial sonobuoy and rocket assisted depth charge etc. ), such as short duration, low SNR, abruptness and instability, a new method for detecting underwater acoustic transient signals is proposed based on the traditional page-test detector. Firstly wavelet transform is used to de-noise the signal removing random spectrum components and improving SNR. Then the page--test detector is adopted to detect the transient signal. The simulation results show that the method can effectively extract the starting location of the transient signal at low SNR, and that its performance is markedly superior to that of the traditional Page-Test detecting method.
出处 《测试技术学报》 2008年第2期160-165,共6页 Journal of Test and Measurement Technology
基金 国家自然科学基金资助项目(60572161) 高等学校全国优秀博士学位论文作者专项资金资助项目(200237)
关键词 水声对抗 瞬态信号 小波去噪 鱼雷 空投浮标 underwater acoustic countermeasure transient signal wavelet de-noising torpedo aerialsonobuoy
  • 相关文献

参考文献11

  • 1Basseville M, Nikiforov I. Detection of Abrupt Change[M]. Englewood Cliffs. NJ, Prentice Hall, 1993: 32-40.
  • 2Colonnese S, Sxarano G. Transient signal detection using higher order moment[J]. IEEE Transaction on Signal Processing, 1999, 47(2): 515-520.
  • 3Chichereau C, Louis J. Short delay detection of transient in additive Gaussian noise via higher order statistic test[C]. IEEE Digital Signal Workshop Proceedings. New York; UDSA, 1996; 299-302.
  • 4Page E. Continuous Inspection Schemes[J]. Biometrika, 1954, 41(3): 100-115.
  • 5Abraham D. Asymptotically optimal bias for general nonlinearity in page's test[J]. IEEE Transaction on Aerospace and Electronic System, 1996, 44(1): 1-8.
  • 6Han C, Willett P, Abraham D. Some methods to evaluate the performance of page's test as used to detect transient signal[J]. IEEE Transaction on Information on Signal Processing, 1999, 47(8): 212-217.
  • 7Zhen Wang, Willett P. A performance study of some transient detectors[J]. IEEE Transaction on signal processing, 2000, 48(9): 2682-2685.
  • 8杨日杰,何友,林洪文.基于子波变换的水声信号去噪方法研究[J].系统仿真学报,2003,15(7):1040-1042. 被引量:3
  • 9杨日杰,何友,林洪文.基于子波奇异性检测的水声信号去噪方法研究[J].系统仿真学报,2003,15(9):1328-1330. 被引量:4
  • 10Donoho D L. De-noising by soft-thresholding[J]. IEEE Trans. IT, 1995, 41(3): 613-627.

二级参考文献10

  • 1Mallat S, Zh0ng S. Characterization of signal from multiscale edges[J]. IEEE Trans. on Pattern analysis and machine intelligence,1992, 14(7): 710-732.
  • 2Mallat S, Hwang W L. Singularity detection and processing with wavelet[J]. IEEE Trans. on IT, 1992, 38(2): 617-643.
  • 3Mallat S, Multiresolution approximations and wavelet orthonomal bases of L2(R) [J]. Trans. of the American Mathematical Society, 1989,315(1): 68-87.
  • 4Donoho D L. De-noising by soft-thresholding[J]. IEEE Trans. Inf.Theory, 1995, 41(3): 613-627.
  • 5Cristobal G, Chagoyen M, Ramirez B E, Lopez J R. Wavelet based de-noising methods[C]. A Comparative study with applications in microscopy, Proc. SPIE, 1996.
  • 6Pierre Moulin, Wavelet thresholding techniques for power spectrum estimation[J]. IEEE Transactions on signal processing, 1994, 42(11).
  • 7Mallat S. Multiresolulion approximations and wavelet orthonomal bases of L^2(R) [J]. Trans. Of the American Mathematical Society, 1989,315(1): 68-87.
  • 8Mallat S. A theory for multiresolulion signal decomposilion: the wavelet representation[J], IEEE Tran on Pattern Analysis and Intelligence, 1989, 11(7): 674-693.
  • 9Mallat S, Zhong S. Characterization of signal from multiscale edges.IEEE Trans[J]. On Pattern analysis and machine intelligence, 1992,14(7): 710-732.
  • 10Mallat S, Hwang W L. Singularity detection and processing with wavelet[J]. IEEE Trans. on IT, 1992, 38(2): 617-643.

共引文献3

同被引文献80

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部