摘要
High-density polyethylene/carbon black foaming conductive composites were prepared from acetylene black(ACEY) and super conductive carbon black(HG-1P) as conductive filler, low-density polyethylene(LDPE) as the second component, ethylene-vinyl acetate(EVA) and ethylene propylene rubber(EPR) as the third component, azobisformamide(AC) as foamer, and dicumyl peroxide(DCP) as cross-linker. The structure and resistivity-temperature behavior of high-density polyethylene(HDPE)/CB foaming conductive composites were investigated. Influences of carbon black, LDPE, EVA, EPR, AC, and DCP on the foaming performance and resistivity-temperature behavior of HDPE/CB foaming conductive composites were also studied. The results reveal that HDPE/CB foaming conductive composite exhibits better switching characteristic; ACET-filled HDPE foaming conductive composite displays better positive temperature coefficient(PYC) effect; whereas super conductive carbon black(HG-1P)-filled HDPE foaming conductive composite shows better negative temperature coefficient(NTC) effect.
High-density polyethylene/carbon black foaming conductive composites were prepared from acetylene black(ACEY) and super conductive carbon black(HG-1P) as conductive filler, low-density polyethylene(LDPE) as the second component, ethylene-vinyl acetate(EVA) and ethylene propylene rubber(EPR) as the third component, azobisformamide(AC) as foamer, and dicumyl peroxide(DCP) as cross-linker. The structure and resistivity-temperature behavior of high-density polyethylene(HDPE)/CB foaming conductive composites were investigated. Influences of carbon black, LDPE, EVA, EPR, AC, and DCP on the foaming performance and resistivity-temperature behavior of HDPE/CB foaming conductive composites were also studied. The results reveal that HDPE/CB foaming conductive composite exhibits better switching characteristic; ACET-filled HDPE foaming conductive composite displays better positive temperature coefficient(PYC) effect; whereas super conductive carbon black(HG-1P)-filled HDPE foaming conductive composite shows better negative temperature coefficient(NTC) effect.