期刊文献+

径向三腔渡越时间振荡器数值模拟 被引量:6

Numerical simulation of radial three-cavity transit time oscillator
下载PDF
导出
摘要 基于渡越辐射机理结合径向结构的低阻抗特性,提出了一种新型的低阻抗高功率微波器件——径向三腔渡越时间振荡器,它由3个等间距的边耦合同轴腔组成,径向运动电子束与谐振腔中的角向均匀模式场相互作用。采用PIC粒子模拟程序进行了模拟研究。在电子束能量450 keV、束流60 kA且无外加引导磁场的条件下,当结构参数网长为4.8 cm,腔间距为1.4 cm,电子发射面为0.8 cm,内径为8 cm时,获得了平均功率7.4 GW,频率4.1 GHz的微波输出,效率达27.4%,阻抗7.5Ω。通过粒子模拟给出了束波互作用效率随电子束电压、电流以及谐振腔间距的变化曲线,电子束电压对输出微波频率的影响曲线以及不同谐振频率与最佳谐振腔间距的对应曲线,这些曲线表明该器件具有渡越时间效应的基本特征,属于渡越辐射器件,且具有对电子束质量要求不高的特点。 A new low-impedance of HPM source called radial three-cavity transit time oscillator is proposed based on the transition radiation and the low-impedance character of the radial structure. The oscillator is consisted of three side-coupling coaxial cavities which have the same cavity height. Circle symmetrical models are designed to effect with the electrons which moving in the radial direction. Through the PIC simulation, A C-band oscillator is designed, and the average operation power of 7.4 GW at 4.1 GHz is obtained, when excited by a 450 keV, 60 kA radial electron beam, with an impedance of 7.5 Ω. The vital character lines are obtained by simulation. Analysis result reveals that the oscillator has the basic characters of the transit time effect, and is of a transition radiation oscillator which has traits as follows: low impedance, high efficiency, less modes competition and low requirement for the characters of the electron beam.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2008年第3期473-476,共4页 High Power Laser and Particle Beams
关键词 高功率微波 渡越辐射 渡越时间振荡器 径向谐振腔 高频磁场 High power microwave Transition radiation Transit time oscillator Radial cavity High-frequency magnetic field
  • 相关文献

参考文献8

二级参考文献26

  • 1丁武.在速调管中空间电荷波对辐射波引起的电子束群聚的修正[J].强激光与粒子束,2005,17(6):888-892. 被引量:1
  • 2李少甫,丁武,杨中海.新型高功率虚阴极径向反射速调管振荡器[J].强激光与粒子束,2005,17(11):1725-1729. 被引量:2
  • 3谢家.调速管群聚理论[M].北京:科学出版社,1966..
  • 4何琥,中国国防科学技术报告,1999年
  • 5张克潜,微波与光电子学中的电磁理论,1994年,259页
  • 6陈森玉,高能物理与核物理,1982年,6卷,5期,546页
  • 7谢家,调速管群聚理论,1966年
  • 8李少甫.[D].北京:中国工程物理研究院研究生部,2002.
  • 9Arman M J.Initial study of a low-impedance high powerradial klystron amplifier[C]//Proceeding of the Seventh National Conference on HPM Technology.Monterey,CA,1994.
  • 10Arman M J.High power radial klystron oscillator[C]//Proc of SPIE.1995,2557:1-31.

共引文献23

同被引文献33

  • 1FAN Zhikai1, LIU Qingxiang1, CHEN Daibing1, TAN Jie1 & ZHOU Haijing2 1. Institute of Applied Electronics, Chinese Academy of Engineering Physics, Mianyang 621900, China,2. Institute of Applied Physics and Computational Mathematics, Beijing 100088, China.Theoretical and experimental researches on C-band three-cavity transit-time effect oscillator[J].Science China(Physics,Mechanics & Astronomy),2004,47(3):310-329. 被引量:4
  • 2谢东,刘庆想.平面螺线外的磁场研究[J].大学物理,2005,24(9):23-24. 被引量:7
  • 3Marer B M, Clark M C, Bacon I. D, et al. The split-cavity oscillator: a high-power e-beam modulator and microwave source[J]. IEEE Trans on Plasma Sci, 1992, 20(3):312-331.
  • 4Barroso J J. Split-cavity monotrons achieving 40 percent electronic efficiency[J]. IEEE Trans on Plasma Sci, 2004, 32(3):1205-1211.
  • 5Mitter R B, McCullough W F, Laneuster K T, et al. Super-reltron theory and experiments[J]. IEEE Trans on Plasma Sci, 1992, 20(3) : 332-343.
  • 6Lemke R W. Dispersion analysis of symmetric transverse magnetic modes in a split cavity oscillator[J].J Appl Phys, 1992, 72(9):4422- 4428.
  • 7Barroso J j. Design facts in the axial monotron[J].IEEE Trans on Plasma Science, 2000, 28(3):652-656.
  • 8Barroso J J, Kostov K G. Triple beam monotron[J].IEEE Trans on Plasma Science, 2002, 30(3) :1169-1175.
  • 9Barroso J J. Split cavilymonotrons achieving 40 percent electronic efficiency[J].IEEETrans on Plasma Science, 2004, 32(3): 1205-1211.
  • 10Marder B M, Clark M C, Bacon L D, et al. The split-cavity oscillator., a high-power E-beam modulator and microwave source[J]. IEEE Transactions on Plasma Science, 1992, 20(3) : 312- 331.

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部