期刊文献+

湍流燃烧模型对氢燃料超燃室流场模拟的影响 被引量:8

Effect of turbulent combustion model on simulation of hydrogen supersonic combustion
下载PDF
导出
摘要 采用化学平衡的假定概率密度函数(PDF)模型和火焰面模型计算了德国宇航研究中心的超燃室反应流,计算结果与有限速率反应模型的和实验的结果进行了对比.使用有限体积法离散Favre平均的N-S方程,湍流模型采用κ-ε模型.研究表明:(1)有限速率反应模型在喷氢孔近场,化学平衡的假定PDF模型在喷氢孔远场不能准确捕捉流场的细致结构,而火焰面模型对全流场预测较好,后两种模型的计算时间较有限速率反应模型节省约38%;(2)超燃室内湍流和燃烧相互作用不可忽略,从预测精度和计算效率来看,火焰面模型有较好的工程应用前景. The equilibrium chemistry model using assumed probability density function (PDF) and the flamelet model were adopted to numerically simulate the reactive flow filed of the supersonic combustor of The Geman Aerospace Center. The calculated results were compared with those of the finite-rate chemistry model and the experiments. Finite volume method was used to discretize Favre-averaged Navier-Stokes equations, and k-ε turbulence model was employed. The results show: (1)the finite-rate chemistry model and the equilibrium chemistry model using assumed PDF cannot capture fine structures of near-field and far-field from the hydrogen injector, respectively, while the flamelet model can predict the flow field well, and computation time of the latter two models is saved about 38% over that of the finite-rate chemistry model; (2) the interaction between turbulence and chemistry in the reactive flow filed of the supersonic combustor should not be ignored, and the flamelet model may have a bright prospect in engineering practices in terms of efficiency and accuracy.
出处 《航空动力学报》 EI CAS CSCD 北大核心 2008年第4期605-610,共6页 Journal of Aerospace Power
关键词 航空、航天推进系统 超燃冲压发动机 湍流燃烧 超声速燃烧 火焰面模型 反应流 数值模拟 aerospace propulsion system scramjet turbulent combustion supersonic combustion flamelet model reacting flow numerical simulation
  • 相关文献

参考文献6

  • 1Oevermann M. Numerical investigation of turbulent hy drogen combustion in a scramjet using flamelet modeling [J]. Aerospace Science and Technology, 2000, 4:463-480.
  • 2Chakraborty D, Paul P J, Mukunda H S. Evaluation of combustion models for high speed H2/air confined mixing layer using DNS data[J]. Combustion and Flame, 2000, 121:195-209.
  • 3Baurth R A, Alexopoulos G A, Hassan H A. Modeling of supersonic turbulent combustion using assumed probabili ty density functions[J]. Journal of Propulsion and Power, 1994,10(6) : 777-786.
  • 4邹春,郑楚光,周力行.条件矩模型模拟湍流扩散燃烧[J].力学学报,2002,34(6):969-977. 被引量:4
  • 5Waidmann W, Alff F, Bohm M, et al. Supersonic combustion of hydrogen/air in a scramjet combustion chamber [J]. Space Technology, 1995, 15(6):421-429.
  • 6Clutter J K, Mikolaitis D W, Shyy W. Effect of reaction mechanism in shock-induced combustion simulations[R]. AIAA Paper 98-0274.

二级参考文献14

  • 1[1]Zhou Lixing. Theory and Numerical Modeling of Turbulent Gas-particle Flow and Combustion. Science Press and CRC Press, INC, 1993
  • 2[2]Givi P. Model free simulations of turbulent reactive flows. Progress in Energy and Combustion Science, 1989,15:1~107
  • 3[3]Pope SB. Computations of turbulent combustion: progress and challenges. In: 23rd Symposium (Int) on Combustion, 1990. 591~612
  • 4[4]Zhou LX, Chen XL, Zheng CG, et al. Second-order turbulence-chemistry models for simulating NOx formation in gas combustion. Fuel, 2000, 79:1289~1301
  • 5[5]Klimenko AY, Bilger RW. Conditional moment closure for turbulent combustion. Progress in Energy and Combustion Science, 1999, 25:595~687
  • 6[6]Marsi AR, Dibble RW, Barlow RS. The structure of turbulent nonpremixed flames revealed by Ramam-RayleighLif measurements. Progress in Energy and Combustion Science, 1996, 22:307~362
  • 7[7]Bilger RW. Conditional moment closure for turbulent reacting flow. Phys Fluids A, 1993, 5(2): 436~444
  • 8[8]Klimenko AY. Multicomponent diffusion of various admixtures in turbulent flow. Fluid Dynamics, 1990, 25:328~334
  • 9[9]Bowman CT, Hanson RK, Davidson DF, et al. http://www.me.berkeley.edu/gri-mech/, 1995
  • 10[10]Bilger RW, Antonia RA, Srinivasan KR. The determination of intermittency from the probability density function of a passive scalar. The Physics of Fluids, 1974, 19:1471~1474

共引文献3

同被引文献116

  • 1刘娟,潘余,刘卫东,王振国.超燃冲压发动机双凹腔燃烧室氢气燃烧流场分析[J].航空动力学报,2009,24(11):2501-2505. 被引量:8
  • 2符全军,杜宗罡,兰海平,鱼升堂,杨超.UDMH/NTO双组元凝胶推进剂的制备及性能研究[J].火箭推进,2006,32(1):48-53. 被引量:20
  • 3Kosarev I N, Mintoussov E I, Starikovskaya S M, et al. Control of combustion and ignition of hydrocarbon-air mixtures by nanosecond pulsed discharges [R]. AIAA- 2005-3429.
  • 4Parish J W,Ganguly B N, Absolute H atom density measurement in short pulse methane discharge[R]. AIAA- 2004-182.
  • 5Bocharov A N, Bityurin V A, Filimonova E A, et al. Numerical study of plasma assisted mixing and combustion in non -premixed flows[R]. AIAA-2004-1017.
  • 6Tsuchiya S,Negishi J,Ohkawa Y,et al. Ignition characteristics of laser-induced plasmas in supersonic combustion [R]. AIAA 2003 -5049.
  • 7Gordon S, McBride B J. Computer program for calculation of complex chemical equilibrium compositions, rocket performance,incident and reflected shocks, and chapman-jouguet detonations[R]. NASA SP-273,1971.
  • 8Shibkov V M, Konstantinovskij R S. Kinetic model of ignition of hydrogen oxygen mixture under conditions of non- equilibrium plasma of the gas discharge[R]. AIAA- 2005 987.
  • 9Bozhenkov S M, Kykaev E N, Kuksin A Y, et al. Plasma control of ignition of hydrogen-air and methane-air mixtures[R]. AIAA 2003-5045.
  • 10Kindler M, Lempke M, Blacha T, et al. Numerical investigation of the HyShot supersonic combustion configuration. AIAA 2008-5167, 2008.

引证文献8

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部