期刊文献+

GARCH-EVT模型在动态VaR中的应用 被引量:13

Application of GARCH-EVT Model in Dynamic VaR
下载PDF
导出
摘要 在综合考虑金融资产收益数据分布的波动集群性和厚尾特征,尤其是波动的条件异方差对动态VaR估计的影响的基础上,运用极值理论(EVT),建立了GARCH-EVT模型,计算了上海证券市场综合指数的动态VaR,并且将GARCH-EVT模型与GARCH-NORMAL模型进行比较.通过实证分析,并利用后验测试,结果表明GARCH-EVT模型优于GARCH-NORMAL模型.GARCH-EVT模型很好地解决了波动集群性和厚尾现象,为管理者和投资者提供了一个控制风险、预测收益的量化工具. Considering both the characteristics of clustering volatility and fat-tail of the data distribution of returns on financial assets especially the impact of conditional heteroscedaticity on the estimate of dynamic VAR, a GARCH-EVT model is developed by EVT (extreme value theory) to calculate the dynamic VAR(value at risk) of SSCI (Shanghai stock comprehensive index), then the model is compared with the GARCH-NORMAL model. The empirical analysis and posterior test results reveal that the GARCH-EVT model is superior to the GARCH- NORMAL model, because the former can solve better the problems of clustering volatility and fattail phenomenon. So it provides the managers and investors with quantitatively useful means for risk control.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第4期601-604,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(70771023)
关键词 动态VaR(value at risk) GARCH 极值理论 波动 厚尾 dynamic VaR GARCH EVT volatility fat-tail
  • 相关文献

参考文献9

  • 1陈磊,任若恩,张金宝.基于GARCH模型的风险价值蒙特卡罗模拟[J].系统工程,2006,24(7):57-61. 被引量:4
  • 2Enggle R F. Autoregressive conditional heteroskedasticity with estimates of variance of UK inflation [ J ]. Econometrica, 1982,50(4) :987 - 1008.
  • 3Bollerslev T A. Generalized autoregressive conditional heteroskcdasticity[J]. Journal of Econometrics, 1986, 31 (3) :307 - 327.
  • 4Enggle R F. Measuring and testing the impact of news on volatility[J]. Journal of Finance, 1993,48(5) : 1749 - 1778.
  • 5金秀,许宏宇.基于EGARCH-VaR的半参数法及实证研究[J].东北大学学报(自然科学版),2007,28(1):141-144. 被引量:5
  • 6惠晓峰,柳鸿生,胡伟,何丹青.基于时间序列GARCH模型的人民币汇率预测[J].金融研究,2003(5):99-105. 被引量:121
  • 7Bhattacharyya M, Ritolia G EVT enhanced dynamic VaR-a rulc based margin system [ J ]. International Reviews of Financial Analysis, 2006,28 ( 3 ) : 210 - 285.
  • 8McNeil A J. Extreme value theory for risk managers[J]. International Reviews of Financial Analysis, 1999, 21 ( 5 ) : 300 - 340.
  • 9McNeil A J, Frey R. Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach[J]. International Reviews of Financial Analysis, 2000,22 (7) : 271 - 300.

二级参考文献26

  • 1任兆璋,宁忠忠.人民币汇率预期的ARCH效应分析[J].华南理工大学学报(自然科学版),2004,32(12):83-88. 被引量:21
  • 2冯春山,蒋馥,吴家春.应用半参数方法计算市场风险的受险价值[J].系统工程理论方法应用,2005,14(4):379-381. 被引量:5
  • 3Bollerslev,Tim.Generalized antoregressive conditicmal hetemskedasticity. Journal of Ecommetrics.1986, (31) :307-327.
  • 4Engle, R. F. Autoregressive Conditionalheteroskedasticity with estimates of the variance of U. K. inflation, Econmnetrica. 1982,(50) :987-1008.
  • 5Torben G. A., Tim Bollerslev, Francis X.D., Paul Labys. The Distribution of Realized Exchange Rate Volatility. Journad of American Statistical Association.2001,96(453):42-55.
  • 6Javiem Aguilar,Stefan Nydahl. Central bank intervention and exchange rates:the case of Sweden.Journal of International Financial Markets, Institutions and Money.2000,(10):303-322.
  • 7Chris Brooks,Simon P.B.Forecasting exchange rate volatilityusing conditional variance models selected by informationcriteria Ecomomics Letters,1998,(61):273-278.
  • 8Ljung, G., G. Box. A Measure of Lack of Fit in Time Series Models. Biometrika.1979,66(2):65-70.
  • 9Jarque, C., A. Bera. Efficieat Tests for Normality, Hotmskedasticlty, and Serial Independence of Regression Residuals. Economics Letters. 1980,6(2) :55-59.
  • 10Jorion P.VALUE AT RISK:The Benchmark for Controlling Market Risk[M].New York:McGraw-Hill,2005.

共引文献127

同被引文献62

  • 1高松,李琳,史道济.平稳序列的POT模型及其在汇率风险价值中的应用[J].系统工程,2004,22(6):49-53. 被引量:12
  • 2欧阳资生,龚曙明.广义帕累托分布模型:风险管理的工具[J].财经理论与实践,2005,26(5):88-92. 被引量:27
  • 3Barndorff-Nielsen O E. Exponentially decreasing distributions for the logarithm of particle size [ J ]. Proc R Soc Lond A,1977,353(1674) :401.
  • 4Bollerslev Tim. Generalized Autoregressive Conditional Heteroskedasticity[J]. Journal of Econometrics. 1986, (31).
  • 5Engle R.F.. Autoregressive Conditional Heteroskedasticity with Estimates of the Variance ofU. K. Inflation [J]. Econometrica, 1982, (?).
  • 6Younes Bensalah. Steps in Applying Extreme Value Theory to Finance: A Review[R]. Bank of Canada Working Paper, 2000.
  • 7Kupiec. Techniques for Verifying the Accuracy of Risk Measurement Models [J]. Journal of Derivatives, 1995, (12).
  • 8Alberola E, Chevallier J, Chze B. Price Drivers and Structural Breaks in European Carbon Prices 2005 - 2007 [ J ]. Energy Poli- cy, 2008, 36 (2).
  • 9Chevallier J, Ielpo F, Mercier L. Risk Aversion and Institutional Information Disclosure on the European Carbon Market: A Case -Study of the 2006 Compliance Event[ J]. Energy Policy, 2009, 37 (1).
  • 10Zhen - Hua Feng, Yi - Ming Wei, Kai Wang, Estimating Risk for the Carbon Market Via Extreme Value Theory- An Empirical A- nalysis of the EU ETS[ J]. Applied Energy,2012, (99).

引证文献13

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部