期刊文献+

一种基于信任网络的协同过滤推荐策略 被引量:8

A Trust Network-based Collaborative Filtering Recommendation Strategy
下载PDF
导出
摘要 提出了一种基于信任网络的协同过滤推荐策略,在传统协同过滤策略中引入信任网络,将相似度和信任度结合在一起,提高推荐的准确率.实验证明,在数据稀疏的情况下该策略比传统的协同过滤推荐策略有更好的推荐效果. Collaborative Filtering (CF) is one of the most prevalent recommendation approaches. It provides users with personalized services according to similarity of their preferences. However, the performance of traditional CF method is seriously limited due to the Sparsity problem. A new approach is proposed to deal with this problem. It introduces trust network in traditional CF process. Trust value is propagated through the trust network to match more neighbors for cold start users, and is combined with similarity to generate a compound weight to produce recommendations. Experiment shows that this method is more effective than traditional CF obviously.
作者 卢竹兵 唐雁
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第2期123-126,共4页 Journal of Southwest China Normal University(Natural Science Edition)
关键词 协同过滤 推荐系统 信任网络 信任度 collaborative filtering recmmender system trust network trust value
  • 相关文献

参考文献11

  • 1彭玉,程小平,徐艺萍.一种改进的Item-based协同过滤推荐算法[J].西南大学学报(自然科学版),2007,29(5):146-149. 被引量:17
  • 2Massa P, Bhattacharjee B. Using Trust in Recommender Systems: an Experimental Analysis [A]. Conference on Trust Management [C]. Berlin: Springer, 2005, 2995(5): 221-235.
  • 3Herlocker J L, Konstan J A, Terveen L G, et al. Evaluating collaborative filtering recommender systems [J]. ACM Transactions on Information System, 2004, 22 (1): 5 - 53.
  • 4Massa P, Avesani P. Trust-aware Collaborative Filtering for Recommender Systems [A]. Proceedings of International Conference on Cooperative Information Systems [C]. Berlin: Springer, 2004:492 - 508.
  • 5Sarwar B M, Karypis G, Konstan J A, et al. Application of Dimensionality Reduction in Recommender System-A Case Study [EB/OL], http: //www. grouplens. org/papers/pdf/webKDD00, pdf, 02- 09- 26.
  • 6王亚利,李立新.基于商务关系网的关联购买策略[J].西南大学学报(自然科学版),2007,29(5):150-153. 被引量:2
  • 7Huang Z, Chen H, Zeng D. Applying Associative Retrieval Techniques to Alleviate the Sparsity Problem in Collaborative Filtering. ACM Press, 2004, 22 (1) : 116 - 142.
  • 8邓爱林,朱扬勇,施伯乐.基于项目评分预测的协同过滤推荐算法[J].软件学报,2003,14(9):1621-1628. 被引量:558
  • 9Resnick P, Iacovou N, Suchak M, et al. Grouplens : An open architecture for collaborative filtering of netnews [A]. ACM Conference on Computer Supported Collaborative Work [C], Chapel Hill: ACM Press, 1994: 175 - 186.
  • 10John O, Barry S. Trust in recommender systems [A]. Proceedings of the 10th International Conference on Intelligent User Interfaces [C]. San Diego: ACM Press, 2005:167-174.

二级参考文献25

  • 1陈玉婷,王斌,刘博,宋斌,李颉.关联规则挖掘算法介绍[J].计算机技术与发展,2006,16(5):21-25. 被引量:16
  • 2[1]Breese J,Hecherman D,Kadie C.Empirical Analysis of Predictive Algorithms for Collaborative Filtering[A].Proceed ings of the 14th Conference on Uneertainty in Artifical Itelligence(UAI-98)[C].New York:ACM Press,1998:43 -52.
  • 3[2]Akira Sato,Takahisa Ando,Hiroya Inakoshi,et al.Personalization System based on Dyanamic Learning[J].Journal of the Royal Statistical Society,1997,38(1):44-59.
  • 4[3]Stawar B,Karypis G,Konstan J,et al.Item-Based Collaborative Filtering Recommendation Algorithms[A].Proceed ings of the Tenth International World Wide Web Conference[C].Paris:IEEE Computer Society Press,2001:285 -295.
  • 5[4]Yu Li,Liu Lu,LiXuefeng.A Hybid Collaborative Fitering Method for Multiple-Interests and Multiple Content Recommendation in E-Commerce[J].Expert Systems with Applications,2005,28(1):67 -77.
  • 6[5]Starwar,G Karypis,J Konstan,et al.Item-Based Collaborative Filtering Recommendation Algorithms[A].Proc of the 10th Int,l World Wide Web Conf[C].New York:ACM Press,2001:285-295.
  • 7[1]Guttman H,Moukas A G,Maes P.Agent-Mediated Electronic Commerce:A survey[J].The Knowledge Engineering Review,1998; 13(2):147-159.
  • 8[3]Lashkari Y,Metral M,Maes P.Collaborative Interface Agents[A].In Proc of the 12th National Conf on Artificial Intelligence[C].Seattle:AAAI Press,1994:444-449.
  • 9[4]Roda C,Jennings N R,Mamdani E H.The Impact of Heterogeneity on Cooperating Agents[A].the AAAI Workshop on Cooperation Among Heterogeneous Intelligent Systems[C].Anaheim,1991:14-19.
  • 10[6]中国互联网络信息中心.《中国互联网络热点调查报告(电子邮箱和网络购物)》[EB/OL].http://www.cnnic.cn/html/Dir/2004/11/15/2579.htm,2004-11-16.

共引文献570

同被引文献66

引证文献8

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部