期刊文献+

基于快速属性选择的贝叶斯分类在入侵检测中的应用 被引量:2

Bayesian Classifier Based on the Fast Attribute Selection for Intrusion Detection
下载PDF
导出
摘要 高速网络环境中数据量日益增大,安全问题日益突出,对入侵检测技术提出了更高的要求。朴素贝叶斯作为数据挖掘的重要方法之一,在入侵检测中有着重要的地位。由于其属性独立假设,使得如何在海量高维数据处理背景下快速、准确、有效地选出代表原数据的属性显得尤为重要。本文提出了一种快速属性选择方法并结合朴素贝叶斯分类模型应用于入侵检测中。实验表明,结合了该属性选择方法的朴素贝叶斯分类器有很好的分类精度及较低的时空消耗。 As a consequence of the increasing security problems and huge data in high-speed networks, it is urgent to develop new Intrusion Detection Techniques. Naive Bayesian is one of the most important approaches in data mining, and it has a high ranker in Intrusion Detection. According to its conditional independence assumption, it is very critical to select attributes, which represent raw data, quickly, and effectively when processing huge high-dimension data in networks. This paper proposes a Fast Attribute Selection idea combined with Naive Bayesian Classifier, which is used in Intrusion Detecting. Experiment's results show that our idea has high precision and low cost.
作者 王翔 胡学钢
出处 《计算机科学》 CSCD 北大核心 2008年第4期151-153,共3页 Computer Science
基金 安徽省自然科学基金课题(编号050420207)资助
关键词 快速属性选择 朴素贝叶斯分类 入侵检测 Fast attribute selection, Naive Bayesian classifier, IDS
  • 相关文献

参考文献8

  • 1Han J W, Kamber M. Data Mining.. Concepts and Techniques. San Francisco, CA: Morgan Kaufmann, 2000
  • 2Ayoade J. Feature deduction and ensemble design of intrusion detection systems. Article Computers & Security, 2005,24(6)
  • 3MITCHELL TM.机器学习[M].曾华军,张银奎.北京:机械工业出版社,2003.
  • 4王国胤,于洪,杨大春.基于条件信息熵的决策表约简[J].计算机学报,2002,25(7):759-766. 被引量:594
  • 5Liu Huan, Setiono R. Feature selection and elassification-a probabilistie wrapper approach[C]. In:Proceedings of the Ninth International Conference on Industrial and Engineering Applications of AI and ES
  • 6翟素兰,郑诚.用于入侵检测的基于粗糙集的贝叶斯分类器[J].计算机技术与发展,2006,16(1):226-227. 被引量:2
  • 7Information and Computer Science University of California. Irving KDD cup 1999 Data [EB/OL]. http://kdd.ics. uei. edu/databases/kddeup99/kddeup99.html
  • 8胡学钢,郭亚光.一种基于粗糙集的朴素贝叶斯分类算法[J].合肥工业大学学报(自然科学版),2006,29(2):169-172. 被引量:11

二级参考文献17

  • 1王国胤.Rough集理论和知识获取[M].西安:西安交通大学出版社,2001..
  • 2MitchellTM. 曾华军 张银奎 泽.机器学习[M].北京:机械工业出版社,2003..
  • 3Information and Computer Science University of California,Irving KDD cup 1999 Data[EB/OL]. http://kdd. ics, uei.edu/databases/kddcup99/kddcup99, html, 1999 - 10.
  • 4Knowledge Systems Group, Dept, of Computer and Information Science, Norwegian University of Science and Technology, Trondheim, Norway. ROSETTA [ EB/OL ]. http://rosetta.lcb. uu. se/general/download/1999.
  • 5Elkan C.Boosting and naive Bayesian learning,in Technical Report CS97[R].San Diego:Dept.of Computer Science and Engineering,Univ Calif at San Diego,1997.
  • 6HanJianwei.Data mining concepts and techniques[M].北京:机械工业出版社,2001.30-50.
  • 7Pawlak Z.Rough sets[M].London:Kluwer academic publishers,1991.10-60.
  • 8Pawlak Z.Rough sets:probabiIistic versus deterministic approach[J].International Journal of Man-Machine Studies,1998,29:81-95.
  • 9MitchellTM.Machinelearning[M].北京:机械工业出版社,2003.80-90.
  • 10王国胤.Rough集理论与知识获取[M].西安交通大学出版社,2003,3..

共引文献632

同被引文献20

  • 1李昆仑,黄厚宽,田盛丰,刘振鹏,刘志强.模糊多类支持向量机及其在入侵检测中的应用[J].计算机学报,2005,28(2):274-280. 被引量:49
  • 2尹清波,张汝波,李雪耀,王慧强.基于线性预测与马尔可夫模型的入侵检测技术研究[J].计算机学报,2005,28(5):900-907. 被引量:29
  • 3Chen R C,Chen S P.An intrusion detection based on support vector machines with a voting weight schema[C].Proceedings of the 20th International Conference on Industrial,Engineering, and Other Applications of Applied Intelligent Systems,2007:l148- 1157.
  • 4Yang J, Yu K, Huang T. Efficient highly over-complete sparse coding using a mixture model[C].Crete,Greece: 1 lth European Conference on Computer Vision,2010.
  • 5Wright J, Yang A, Ganesh A, et al. Robust face recognition via sparse representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(2):210-227.
  • 6Yang J,Yu K,Huang T, et al.Image super-resolution as sparse representation of raw image patches[C].Anchorage,AK:IEEE Conference on Computer Vision and Pattern Recognition, 2008.
  • 7Yang J, Yu K, Huang T. Supervised translation-invariant sparse coding[C].San Francisco,California,USA:Conference on Computer Vision and Pattern Recognition,2010.
  • 8Rubinstein R,Bruckstein A M,Elad M.Dictionaries for sparse representation modeling[C].Proceedings of the IEEE,2010,98(6): 1045-1057.
  • 9Aharon M,Elad M,Bruckstein A M.The K-SVD:an algorithm fordesigning of over-complete dictionaries for sparse representation [J]. IEEE Trans on Signal Processing, 2006,54 (11): 4311- 4322.
  • 10Bruckstein A M,Donoho D L,Elad M.From sparse solutions of systems of equations to sparse modeling of signals and images [J].SIAM Rev,2009,51(1):34-81.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部