期刊文献+

以Zeocin抗性基因为选择标记的Candida glycerinogenes遗传转化 被引量:3

A Transformation System for Candida glycerinogenes,Based on Zeocin Resistance
下载PDF
导出
摘要 为从分子水平上阐释产甘油假丝酵母(Candida glycerinogenes)高产甘油机理,建立一种方便可行的遗传转化系统是十分必要的。与G418和潮霉素等抗生素相比,Zeocin抗生素对C.glycerinogenes具有较低的致死浓度。以pGAPZb作为构建整合载体的骨架,以Zeocin抗性基因作为选择标记,以URA3基因作为整合位点,构建了C.glycerinogenes整合载体pGA-CU。整合载体经过限制酶线性化后用作转化载体,基于电击转化的方法成功获得了抗Zeocin的转化子并经过PCR分析进一步确证。通过优化电击转化的参数,获得了较为稳定的转化效率,基于这一技术的转化效率每微克DNA可获得120个转化子。为进一步研究该菌株的遗传背景和代谢机理奠定了基础。 In order to facilitate mechanism of high glycerol production by C. glycerinogenes in molecular and genetic level, it is increasingly necessary to develop an efficient and conventional genetic transformation system of C. glycerinogenes. Compared to some antibiotics used for the selection of yeast transformants such as G418, hygromycin B et al, C. glycerinogenes has a higher sensitivity to Zeocin. Using vector pGAPZb as backbone, Zeocin resistance gene for selection marker and URA3 for integrative locus, the integrative plasmid pGA-CU was constructed. After linearized by restriction enzyme, plasmid was transformed into C. glycerinogenes by eletroporation. Transformants were selected and identified by PCR amplification for an unique fragment. With some optimized parameters for eleetroporation, the maximal transformation frequencies of 120 transformants/μg DNA were obtained for an linearized integrative plasmid. This opened a venue for studying the biological character and biosynthesis glycerol of this species at the molecular level.
出处 《激光生物学报》 CAS CSCD 2008年第2期176-180,共5页 Acta Laser Biology Sinica
基金 国家自然科学基金项目(30570142)
关键词 产甘油假丝酵母 遗传转化系统 电击转化 整合质粒 C. glycerinogenes genetic transformation system electroporation integrative plasmid
  • 相关文献

参考文献14

  • 1ZHUGE J, FANG H Y, WANG Z X, et al. Glycerol Production by a Novel Osmotolerant Yeast Candida glycerinogenes[ J]. Appl Microbiol Biotechnol, 2001, 55 (6): 686-692.
  • 2THOMPSON J R, REGISTER E, CUROTTO J, et al. An Improved Protocol for the Preparation of Yeast Cells for Transformation by Electroporation[ J]. Yeast, 1998, 14(6) : 565-571.
  • 3PRIBYLOVA L, SYCHROVA H. Efficient Transformation of the Osmotolerant Yeast Zygosaccharomices rouxii by Electroporation [J]. J Microbiol Methods, 2003, 55(2) : 481-484.
  • 4DE BACKER M D, MAES D, VANDONINCK S, et al. Transformation of Candida albicans by Electroporation [ J ]. Yeast, 1999, 15(15) : 1609-1618.
  • 5YEHUDA H, DROBY S, WISNIEWSKI M, et al. A Transformation System for the Biocontrol Yeast, Candida oleophila, based on Hygromycin B Resistance[ J]. Curt Genet, 2001, 40 (4) : 282-287.
  • 6RODRIGUEZ L, CHAVEZ F P, BASABE L, et al. Development of an Integrative DNA Transformation System for the Yeast Candida utilis [ J ]. FEMS Microbiol Lett, 1998, 165 (2) : 335- 340.
  • 7BROWN D H, Jr, SLOBODKIN V, KUMAMOTO C A. Stable Transformation and Regulated Expression of an Inducible Reporter Construct in Candida albicans Using Restriction Enzyme-mediated Integration[ J]. Mol Gen Genet, 1996, 251 (1): 75-80.
  • 8谢涛,方慧英,诸葛健.一些氨基酸对产甘油假丝酵母甘油生产的促进作用[J].生物工程学报,2006,22(1):138-143. 被引量:5
  • 9王正祥,诸葛健,曹钰,陈珺,方慧英.产甘油假丝酵母甘油代谢关键酶的研究[J].微生物学报,2000,40(2):180-187. 被引量:17
  • 10LI Y, SHEN W, WANG Z X, et al. Isolation and Sequence Analysis of the Gene URA3 Encoding the Orotidine-5 '-phosphate Decarboxylase from Candida Glycerinogenes WL2002-5, an Industrial Glycerol Producer [ J ]. Yeast, 2005, 22 ( 6 ) : 423- 430.

二级参考文献20

  • 1da Cruz SH,Batistote M,Ernandes JR.Effect of sugar catabolite repression in correlation with the structural complexity of the nitrogen source on yeast growth and fermentation.Journal of the Institute of Brewing,2003,109 (4):349-355
  • 2Chen PF,Harcum SW.Effects of amino acid additions on ammonium stressed CHO cells.Journal of Biotechnology,2005,117:277-286
  • 3Mahishi LH,Rawai SK.Effect of amino acid supplementation on the synthesis of poly (3-hydroxybutyrate) by recombinant phasa+Escherichia coli.World Journal of Microbiology and Biotechnology,2002,18:805-810
  • 4Kumar D,Subramanian K,Bisaria VS et al.Effect of cysteine on methionine production by a regulatory mutant of Corynebacterium lilium.Bioresources Technology,2005,96:287-294
  • 5Beg QK,Bhushan B,Kapoor M et al.Effect of amino acids on production of xylanase and pectinase from Streptomyces sp.QG-11-3.World Journal of Microbiology & Biotechnology,2000,16:211-213
  • 6Wen SH,Zhang T,Tan TW.Utilization of amino acids to enhance glutathione production in Saccharomyces cerevisiae.Enzyme and Microbial Technology,2004,35:501-507
  • 7Albers E,Larsson C,Lid n G et al.Influence of the nitrogen source on Saccharomyces cerevisiae anaerobic growth and product formation.Applied Environmental Microbiology,1996,62:3187-3195
  • 8Omori T,Takashita H,Omori N et al.High glycerol production amino acid analogue-resistant Saccharomyces cerevisiae mutant.Journal of Fermentation and Bioengineering,1995,80:218-222
  • 9Mohammad J,Taherzadeh,Lennart A et al.Strategies for enhancing fermentative production of glycerol:a review.Enzyme Microb Technol,2002,31:53-66
  • 10Zhuge J,Fang HY,Wang ZX.Glycerol production by a novel osmotolerant yeast Candida glycerinogenes.Applied Microbiology and Biotechnology,2001,55:686-692

共引文献20

同被引文献48

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部