期刊文献+

小波包特征熵-神经网络在轴承故障诊断中的应用 被引量:4

Application of neural network based on wavelet packet-characteristic entropy in rolling bearing fault diagnosis
下载PDF
导出
摘要 提出了一种基于小波包特征熵-神经网络的轴承故障诊断新方法。首先对采集到的轴承的振动信号进行三层小波包分解,提取小波包特征熵,然后构造信号的小波包特征向量,并以此向量作为故障样本对三层BP神经网络进行训练,实现智能化故障诊断。仿真结果表明该方法有效可行。 A new fault diagnosis method of vibrating of hearings was proposed on the basis of neural network based on wavelet packet- characteristic entropy (WP- CE). Firstly, three layers wavelet packet decomposition of the acquired vibrating signals of hearings was performed and the wavelet packet - characteristic entropy was extracted; then the eigenvector of wavelet packet of the vibrating signals was constructed, the three layers BP neural network were trained to implement the intelligent fault diagnosis by taking this eigenvector as fault sample. The simulation result from the proposed method is effective and feasible.
作者 王利英
出处 《河北工程大学学报(自然科学版)》 CAS 2008年第1期49-53,共5页 Journal of Hebei University of Engineering:Natural Science Edition
基金 河北省教育厅产业化项目(CY0403)
关键词 滚动轴承 小波包特征熵 神经网络 故障诊断 rolling bearing WP- CE neural network fault diagnosis
  • 相关文献

参考文献10

二级参考文献40

  • 1庞彦军,刘开第,吴海玉,刘志民.指标分类权重的概念及其应用[J].河北建筑科技学院学报,2005,22(4):109-112. 被引量:16
  • 2胡昌华.[D].西安:西安电子科技大学出版社,1999.
  • 3Carvalho I S, Heitor M V. Visualization of vortex breakdown in turbulent unconfined jet flows[J]. Journal Optical Diagnostics in Engineering, 1996, 1(2): 22-30.
  • 4Ruprecht Albert, Helmrich Thomas, Scherer Thomas. Simulation of Vortex rope in a turbine draft tube[D]. IAHR Symposium, Lausanne,Switzerland, 2002.
  • 5Kubota T. Cavitation characteristics of force core in the flow of francis turbine[R]. Fuji Electric Co., Review, 1972.
  • 6Daubechies. The wavelet transforms time frequency localization and signal analysis[J]. IEEE Trans. On Information Theory 3, 1990, 6(3):961-1005.
  • 7Mallat S. Singularity detection and processing with wavelets [J]. IEEE Trans onInformationTheory, 1992, 38(2): 617-643.
  • 8Papoulis A. Maximum entropy and spectral estimation: a review[J]. IEEETrans, ASSP, 1981, ASSP-29(6): 1176-1186.
  • 9JIN J, SHI J. Feature-prewrving data compression of stamping tonnage information using wavelets[J]. Technometrics,1999,41(4):327-339.
  • 10AKANSU A N, HADDAD R A. Multiresolution Signal Decomposition: Transforms, Subbands, Wavelets[M]. New York: Academic, 1992.

共引文献123

同被引文献27

引证文献4

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部