摘要
对一类固定设计下的半参数回归模型进行了研究.通过利用加权最小二乘法及小波估计法给出了未知参数β和未知函数f(·)、g(·)的估计;在较弱的条件下给出了最终加权二乘估计βn的弱收敛速度,(^f)n(·),的弱收敛速度、强相合性以及(g-)n(·)的弱收敛速度.
A kind of semiparametric regression model under fixed design is studied. The estimators of unknown parameter β and the unknown functions f(·), g(·) are derived by the weighted least square method. and the wavelet method . Under some weak conditions, the weak convergence rate of -↑βn, the strong consistency and the weak convergence rate of ^↑fn(·), as well as the weak convergence rate of -↑gn(·) are obtained.
出处
《福州大学学报(自然科学版)》
CAS
CSCD
北大核心
2008年第2期176-181,共6页
Journal of Fuzhou University(Natural Science Edition)
基金
北京印刷学院青年科研基金资助项目(Eb-07-55)
关键词
半参数模型
小波估计
弱收敛速度
强相合性
semiparametric model
wavalet estimation
weak convergence rate
strong consistency