期刊文献+

Mo高压熔化的分子动力学模拟 被引量:1

Melting Property of Mo at High Pressure from Molecular Dynamics Simulation
下载PDF
导出
摘要 采用第一原理方法计算了钼在零温下的结构,表明钼在500 GPa以下一直保持bcc结构(常温),与实验一致。在零压附近计算了E-V关系,利用Murnaghan物态方程拟合得到了零压体积及其模量,与实验结果符合得很好。采用第一原理分子动力学模拟了钼的高压熔化性质。采用NVT系综计算了128个原子的系统,初始构形为bcc结构,体积分别为0.01548、0.01219、0.01098、0.00984、0.00910 nm3/atom,计算了几个温度点,拟合得到了熔化曲线,熔化温度明显高于金刚石压砧(DAC)实验结果;将初始构形改变为fcc结构,模拟其熔化特性,得到的熔化温度明显下降,与激光加载DAC实验结果一致,认为可能的原因是钼熔化后形成的液体结构类似于fcc结构,而不是常态时的bcc结构。 Ab initio calculations are performed on Mo to investigate the structure at zero Kelvin, indicating that Mo is stable in a bcc phase up to the pressure of at least 500 GPa. Ab initio molecular dynamics simulations are also performed on Mo to reveal the melting property under high pressure. An NVT (N,number of particles;T,temperature) ensemble at five volumes (V=0. 015 48,0. 012 19,0. 010 98, 0. 009 84,and 0. 009 10 nm^3/atom) and N=128 atoms arranged initially in an ideal bcc lattice are used in the simulations. The obtained melting curve is located above the one determined in diamond anvil cell experiments. Change of the initial arrangement to fcc phase leads to the decreasing of melting temperature and approaching of melting curve to that from laser-heating diamond anvil cell experiments. It is possibly revealed that the Mo melt under high pressure is similar to fcc rather than bcc structure at ambient conditions.
出处 《高压物理学报》 EI CAS CSCD 北大核心 2008年第1期53-56,共4页 Chinese Journal of High Pressure Physics
基金 国家自然科学基金(10135010) 工程物理研究院科学技术基金(2002Z01041) 中国工程物理研究院科学技术基金(20060107)
关键词 第一原理 分子动力学 高压熔化 ab initio molecular dynamics high pressure melting molybdenum
  • 相关文献

参考文献13

  • 1Errandonea D, Schwager B, Ditz R, et al. Systematics of Transltion-Metal Melting [J]. Phys Rev B, 2001,63: 132104.
  • 2Japel S, Schwager B, Boehler R, et al. Melting of Copper and Nickel at High Pressure:The Role of d Electrons[J]. Phys Rev Lett, 2005,95 : 167801.
  • 3Williams Q,Jeanloz R, Bass J, et al. The Melting Curve of Iron to 250 GPa:A Constraint on the Temperature at Earth's Center [J]. Science, 1987,236 : 181.
  • 4Belonoshko A B,Simak S I,Kochetov A E,et al. High Pressure Melting of Molybdenum [J]. Phys Rev Lett,2004, 92:195701.
  • 5Hixons R S,Boness D A,Shaner J W,et al. Acoustic Velocities and Phase Transitions in Molybdenum under Strong Shock Compression [J]. J Phys Rev Lett, 1989,621637.
  • 6Wang Y, Perdew J P. Correlation Hole of Spin-Polarized Electron Gas, with Exact Small-Wave-Vector and High- Density Scaling [J]. Phys Rev B, 1991,44:13298.
  • 7Kresse G, Hafner J. Ab Initio Molecular Dynamics for Liquid Metals [J]. Phys Rev B, 1993,47 :R558.
  • 8Kresse G,Furthmuller J. Efficency of ab Initio Total Energy Calculations for Metals and Semiconductors Using a Plane Basis Set [J]. Comput Mater Sci, 1996,6: 15.
  • 9Kresse G, Furthmuller J. Efficient Iterative Schemes for ab Initio Total Energy Calculations Using a Plane Wave Basis Set [J].Phys Rev B,1996,54:11169.
  • 10Mao H K,Shaner J W. Specific Volume Measurements of Cu,Mo,Pd and Ag and Calibration of th Ruby Fluores- cence Pressure Gauge from 0.06 to 1 Mbar [J]. J Appl Phys,1978,49:3276-3283.

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部