期刊文献+

用双参数变分法研究自旋-玻色子模型

Application of Double-parameter Variational Approach to the Spin-Boson Model
下载PDF
导出
摘要 采用双参数变分法通过自旋-玻色子模型研究了分子磁体中的宏观量子效应,并通过数值计算研究自旋-玻色子模型中的基态能量和两能级系统从非局域相到局域相的相边界。计算的结果表明:采用双参数变分法可以得到比两种单参数变分法更低的基态能量,体现了该方法的优势。不同的变分法得到的基态能量和相变点是不同的。本文进一步讨论了双参数变分法计算的结果,并和单参数变分法的结果做了比较。 Double-parameter variational approach in combination with the spin-boson model to study the macroscopic quantum effect of molecules magnet is emploied, further investigated the ground state energy of spin-boson model and the phase boundary of two-level system from delocalized to localized phases by numerical calculation. The computational results show that the double-parameter variational approach can deduce lower ground state energy than two types of single-parameter variational approaches, which indicates the superiority of the double-parameter variational approach. Calculations also show that different variational approach can result in different ground state energy and phase boundary. The further discussions are focused on the results of the double parameters variational approach, and a brief comparison with two types of single-parameter variational approaches is also presented.
作者 侯志兰
出处 《科学技术与工程》 2008年第8期1965-1969,共5页 Science Technology and Engineering
关键词 分子磁体 变分法 自旋-玻色子模型 molecules magnet variational approach spin-boson model
  • 相关文献

参考文献13

  • 1[1]Friedman J R,Sarachik M P,Tejada J,et al.Macroscopic measurement of resonant magnetization tunneling in high-spin molecules.Phys Rev Lett,1996;76:3830-3833
  • 2[2]Thomas L,Lionti F,Ballou R,el al.Macroscopic quantum tunneling of magnetization in a single crystal of nanomagnets.Nature,1996;383:145-147
  • 3[3]Leggett A J,Chakravarty S,Dorsey A T,et al.Dynamics of dissipative two-state system.Rev.Mod.Phys.,1987;59:1-85
  • 4[4]Weiss U.Quantum dissipative systems,World Scientific Singapore,1999
  • 5[5]Bray A J,Moore M A.Influence of dissipation on quantum coherence.Phys Rev Lett,1982;49:1545-1549
  • 6[6]Bulla R,Tong N H,Vojta M.Numerieal renormalization group for bosonic systems and application to the sub-ohmic spin-boson model.Phys Rev Lett,2003;91:170601
  • 7[7]Bulla R,Lee H J,Tong N H,et al.Numerical renormalization group for quantum impurities in a bosonic bath.Phys RevB,2005;71:045122
  • 8[8]Silbey R.Harris R A.Variational calculation of the dynamics of a two level system interacting with a bath.J Chem Phys,1984;80:2615-2617
  • 9[9]Chen H,Zhang Y M,Wu X.Squeezed-state approach for phonon coupling in tunneling systems at zero temperature.Phys Rev B,1989:39:546-510
  • 10[10]Chen H,Yu L.Universality of dissipative two-state systems.Phys Rev B,1992;45:13753-13756

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部