期刊文献+

数据挖掘在短时交通流预测模型中的应用研究 被引量:7

Application of data mining on short-term traffic flow forecasting model
下载PDF
导出
摘要 为准确地对交通流进行短时预测,提出了一种新的基于数据挖掘技术的预测模型。该模型综合了改进遗传算法、粗糙集理论和小波神经网络三种数据挖掘技术。建模阶段分为离散化、属性约简和训练三个步骤。在离散化的过程中,采用了改进的遗传算法,保证了系统分类能力,且使断点数目最少;属性约简中采用了粗糙集理论,选择对交通流预测密切相关的属性,加速了小波神经网络的预测速度并使其结构简化;训练中利用了小波变换非线性特性,采用经过属性约简后的数据对小波神经网络进行训练,从而获得短时预测模型。为验证模型的有效性,进行了对比测试,分析结果证实了该预测模型比传统方法具有更高的精度和速度,为交通流的准确实时预测提供了一种新的思路。 To forecast short-term traffic flow accurately, the forecasting model was proposed based on data mining technology. The model improved three data mining technology as rough set theory, genetic algorithm and wavelet neural networks. There were three steps in modeling phase, as discretion, attribute reduction and training. Firstly, the improved genetic algorithm was used to discrete continuous attributes which remained the discernable ability of decision system with least numbers of broken points. Then, decretive data were reduced by using the rough set theory so as to improve forecasting speed and simplify the structure of networks. Finally, the data reduced were input to nonlinear wavelet neural networks. By comparative testing, higher precision and speed were achieved by using the data mining model, which provided a new idea for short-term traffic flow forecasting.
作者 张慧哲 王坚
出处 《计算机集成制造系统》 EI CSCD 北大核心 2008年第4期690-695,共6页 Computer Integrated Manufacturing Systems
基金 国家科技支撑计划资助项目(2006BAF01A46) 上海市社会发展重大专项资助项目(06DZ12001) 上海市基础研究重点资助项目(06JC14066) 上海市科技发展基金重点资助项目(061612058) 上海市登山行动计划资助项目(061111006)~~
关键词 数据挖掘 预测模型 粗糙集 遗传算法 小波神经网络 data mining forecasting model rough set genetic algorithm wavelet neural networks
  • 相关文献

参考文献15

  • 1CHROBOK R, KAUMANN O, WAHLE J, et al. Different methods of traffic forecast based on real data[J]. European Journal of Operational Research, 2004,155 (3) :558-568.
  • 2SMITH B L, DEMETSKY M J. Traffic flow forecasting, comparison of modeling approaches[J]. Journal of Transportation Engineering, 1997,123 (4):261-266.
  • 3WU Bing, ZHOU Wenjun, ZHANG Weidong. The applications of data mining technologies in dynamic traffic prediction [C]//Proceedings of 2003 IEEE Intelligent Transportation System. Washington, D.C. , USA:IEEE, 2003,1:396-401.
  • 4AKINAGA Y, KANEDA S, SHINAGAWA N, et al. A proposal for a mobile communication traffic forecasting method using time-series analysis for multi-variate data[C]//Proceedings of 2005 Global Telecommunications Conference. Washington, D.C., USA:IEEE, 2005,2:6.
  • 5SUN Xiaotian, MUNOZ L, HOROWITZ R. Mixture Kalman filter based highway congestion mode and vehicle density estimator and its application[C]//Proceedings of the 2004 American Control Conference. Washington, D. C. , USA: IEEE, 2004,3 : 2098-2103.
  • 6CHEN Haibo,GRANT-MULLER S. Use of sequential learning for short-term traffic flow forecasting[J]. Transportation Research Part C:Emerging Technologies, 2001, 9 (6): 319- 336.
  • 7YUN S Y, NAMKOONG S, RHO J H, et al. A performance evaluation of neural network models in traffic volume forecasting[J]. Mathematical and Computer Modeling, 1998,27 (9) : 293-310.
  • 8DaimlerChrysler Corporation. Cross industry standard process for data mining[EB/OL]. (1999-02-08)[2007-05-06]. http:// www. crisp-dm.org.
  • 9LI Ruimin,SHI Qixin,WEI Shen. Development of integrated information platform for intelligent transportation systems [C]//Proceedings of 2004 IEEE Intelligent Transportation Systems. Washington, D.C. , USA:IEEE, 2003,1:54-59.
  • 10BEAUBOUEF T, LADNER R, PETRY F E. Rough set spatial data modeling for data mining[J]. International Journal of Intelligent Systems, 2004, 19(7):567-584.

二级参考文献13

  • 1曾黄麟.粗集理论及其应用[M].重庆:重庆大学出版社,1998..
  • 2[1]Pawlak Z, Grzymala-Bausse J, Slowinski R, et al. Rough sets[J]. Communications of the ACM, 1995, 38(11):89~95.
  • 3[2]Pawlak Z, Skowron A. Rough Sets Rudiments[M]. Bulletin of IRSS, 1999:67~70.
  • 4[3]Ziarko W. Introduction to the special issue on rough sets and knowledge discovery. International Journal of Computational Intelligence, 1995,11(2):223~226.
  • 5[4]Nguyen H S, Skowron A. Quantization of real value attributes. Proceedings of Second Joint Annual Conf. on Information Science, Wrightsville Beach, North Carolina, 1995:34~37.
  • 6[5]Nguyen H S. Discretization of Real Value Attributes: Boolean reasoning Approach[Ph. D Dissertation]. Warsaw University,Warsaw, Poland, 1997.
  • 7PAWLAK Z. Rough sets[J]. International Journal of Computer and Information Sciences, 1982,10(11): 341-356.
  • 8PAWLAK Z. Rough set appmach to multi - attribute decision analysis[J]. European of Operational Research, 1994, 48(72) :443-459.
  • 9SHI Kai-quan. S-rough sets and its application in diagnosisrecognitiou for diseasa[J]. IEEE Proceedings of the First International Conference on Machine Learning and Cybenetics,2002,4(1) :50-54.
  • 10XIAOHUA H, CERCON N. Learning in relational data-bases:a rough set approach[J]. Computation Intelligence, 1995, 11(2): 323-337.

共引文献19

同被引文献68

引证文献7

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部