期刊文献+

基于普艾模型的迟滞系统自适应滑模控制 被引量:4

Adaptive Sliding Model Control for Hysteresis System Based on Prandtl-Ishlinskii Model
下载PDF
导出
摘要 通过对所设计的超磁致微位移驱动器的分析与试验研究,建立起超磁致伸缩执行器的机电系统模型。此系统由两个子系统串联构成:滤去传递函数影响的纯迟滞模型;不考虑迟滞影响系统传递函数。为了降低迟滞特性对驱动器工作的影响,在Prandtl-Ishlinskii(PI)迟滞模型的基础上提出滑模变结构控制方案,由Lyapunov稳定性理论推导出此滑模变结构控制方案的自适应控制规律。仿真与试验验证了所提出的机电系统模型的准确性和控制规律的有效性。 A giant magnetostrictive actuator(GMA) is designed, analyzed and experimentally studied. The electromechanical system model is built for the GMA, which is connected in series by two subsystems: rate-independent hysteretic model; transfer function which isn't involved in the effect of hysteresis. In order to mitigate the effect of the hysteresis, the variable structure control based on Prandtl-Ishlinskii(PI) model is proposed, and the adaptive control law for the variable structure control is deduced from the Lyapunov stability theorem. The emulational and experimental results confirm the accuracy of the electromechanical system model and the availability of the controlling method.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2008年第4期171-178,共8页 Journal of Mechanical Engineering
基金 国家自然科学基金(1504750767) 江苏省自然科学基金(BK2005065) 教育部博士点基金(20050286022)资助项目
关键词 迟滞 传递函数 滑模控制 自适应 稳定性 Hysteresis Transfer function Sliding model control Adaptive Stability
  • 相关文献

参考文献11

  • 1GE P, JOUANEH M. Generalized PREISACH model for hysteresis nonlinearity of piezoceramic actuators [J]. Precision Engineering, 1997, 20(2): 99-111.
  • 2GE P, JOUANEH M. Tracking control of a piezoceramic actuator[J]. IEEE Trans. on Control Systems Technology, 1996,4(3): 209-215.
  • 3BOLEY C D, HODGDON M L. Model and simulation of hysteresis in magnetic cores[J]. IEEE Trans. on Magnetics, 1989, 25(5): 3 922-3 924.
  • 4MACKI W, NISTRI P, ZECCA P. Mathematical models for hysteresis[J]. SIAM Review,1993, 35: 94-123.
  • 5MITTAL S, MEAQ C H. Hysteresis compensation in electromagnetic actuator through PREISACH model inversion[J]. IEEE/ASME Trans. on Mechatronics, 2000, 5(4): 394-409.
  • 6WANG Qingqing, SU Chunyi, CHEN Xinkai. Robust adaptive control of a class of nonlinear systems with Prandtl-Ishlinskii hysteresis[C]//43rd IEEE Conference on Decision and Control December 14-17, 2004. Atlantis, 2004: 213-218.
  • 7SU C Y, STEPANENKO Y, SVOBODA J, et al. Robust adaptive control of a class of nonlinear systems with backlash-like hysteresis[J]. IEEE Trans. on Automatic Control, 2000, 45(12): 2 427-2 432.
  • 8TAO G, KOLOTOVIC P V. Adaptive control of plants with unknown hysteresis [J]. IEEE Trans. on Automatic Control, 1995, 40(2): 200-213.
  • 9HWANG C L, JAN C, CHEN Y H. Piezomechanic using intelligent variable-structure control [J]. IEEE Trans. on Industrial Electronic, 2001, 48(1): 47-59.
  • 10D'ANNUNZIO C M, ANN R, CHASSAING C E. Development of a control system for a nonlinear Terfenol-D actuator[C]//Proceedings of SPIE-The International Society for Optical Engineering, Mathematics and Control in Smart Structures, Vasundara V. Varadan, Jagdish Chandra, 1996 (2 715): 588-599.

二级参考文献2

共引文献15

同被引文献32

  • 1唐志峰,项占琴,吕福在.稀土超磁致伸缩执行器优化设计及控制建模[J].中国机械工程,2005,16(9):753-757. 被引量:11
  • 2贾振元,王福吉,张菊,郭丽莎.超磁致伸缩执行器磁滞非线性建模与控制[J].机械工程学报,2005,41(7):131-135. 被引量:24
  • 3唐志峰,吕福在,项占琴.超磁致伸缩微位移驱动器的非线性迟滞建模及控制方法[J].机械工程学报,2007,43(6):55-61. 被引量:18
  • 4孙英,王博文,翁玲,黄文美,曹淑瑛.超磁致伸缩致动器动态线性模型及实验验证[J].中国电机工程学报,2007,27(18):96-101. 被引量:8
  • 5ARMSTRONG B, CANUDA D W C. A survey of models, analysis tools and compensation methods for control of machines with friction[J]. Autornatica, 1994, 30(7): 1083-1138.
  • 6SINOU J J, DEREURE O. Friction-induced vibration for an aircraft brake system-Part 1 : Experimental approach and stability analysis[J]. International Journal of Mechanical Sciences, 2006, 48(5): 536-554.
  • 7SINOU J J, THOUVEREZ F. Friction-induced vibration for an aircraft brake system--Part 2: Non-linear dynamics[J]. International Journal of Mechanical Sciences, 2006, 48(5): 555-567.
  • 8HECKL M A, ABRAHAMS I D. Active control of friction-driven oscillations[J]. Journal of Sound and Vibration, 1996, 193(1): 417-426.
  • 9CHATTERJEE S. Non-linear control of friction-induced self-excited vibration[J]. International Journal of Non-linear Mechanics, 2007, 42(3): 459-469.
  • 10CHATTERJEE S. Vibration control by recursive by time-delayed acceleration feedback[J]. Journal of Sound and Vibration, 2008, 317(1): 67-90.

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部