期刊文献+

基于脉冲神经网络的语音识别方法的初步探究 被引量:3

Exploration of Speech Recognition Based on Spiking Neural Networks
下载PDF
导出
摘要 本文提出了一种基于脉冲神经网络SNN的语音识别方法。该方法以H-H脉冲神经网络模型为基础,采用圆映射的脉冲编码理论将脉冲序列转化为符号序列;同时,以符号序列的距离函数作为语音识别的相似度函数,结合SNN计算能力和实时性强等优势,对语音识别问题进行了初步探讨和研究。实验结果表明,本文提出的特别的研究方法是可行的,具有深入研究的价值。 In this paper, a method of speech recognition based on Spiking Neural Networks(SNNs) is presented. Based on the H-H spiking neural model, this method can transform a sequence of spikes to a symbolic sequence with the circle map spiking coding. Meanwhile we use the distance function of the symbolic sequence as the similarity function of speech recognition, consider the merits of SNN's strong computing capability and real-timeness, and perform an initial study of the speech recognition problem. The experiment shows that this method is feasible and deserves an in-depth research.
出处 《计算机工程与科学》 CSCD 2008年第4期139-141,共3页 Computer Engineering & Science
关键词 脉冲神经网络 语音识别 H—H方程 圆映射 spiking neural networks speech recognition H-H equation circle map
  • 相关文献

参考文献9

  • 1Rabiner L R. A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition[J]. Proceedings of the IEEE, 1989,77(2) : 257-285.
  • 2Wolfgang M. Networks of Spiking Neurons: The Third Generation of Neural Network Models [J]. Neural Networks, 1997, 10(9): 1659-1671.
  • 3Jean P R, Petr L, Patrida D V. Spiking Frequency Versus Odorant Concentration in Olfactory Receptor Neurons [J]. BioSystems, 2000, 58: 133-141.
  • 4Lestienne R Spike Timing, Synchronization and Information Processing on the Sensory Side of the Central Nervous System[J]. Progress in Neurobiology, 2001,65(6) :545-691
  • 5VanRullen R, Guyonneau R, Thorpe S J. Spike Times Make Sense[J]. Trends in Neurosciences, 2005,28 (1) : 1-4.
  • 6Hodgkin A L, Huxley A E A Quantitative Description of Ion Currents and Its Applications to Conduction and Excitation in Nerve Membranes[J]. Journal of Physiology, 1952,117: 500-544.
  • 7童勤业,钱鸣奇,李绪,郭宏记,韩晓鹏,李光,沈公羽.嗅觉神经系统脉冲编码的机理研究[J].中国科学(E辑),2006,36(4):449-466. 被引量:10
  • 8Kim S, Ostlund S. Universal Sealing in Circle Maps[J]. Physica, 1989,39: 365-392.
  • 9张忠建,陈式刚.圆映象的符号动力学[J].物理学报,1989,38(1):1-8. 被引量:5

二级参考文献1

共引文献12

同被引文献25

  • 1芮挺,沈春林,张金林.车牌识别中倾斜牌照的快速矫正算法[J].计算机工程,2004,30(13):122-124. 被引量:28
  • 2孟显勇,袁丁.多层BP神经网络用于破译椭圆曲线密码[J].四川师范大学学报(自然科学版),2005,28(3):371-375. 被引量:3
  • 3何铁军,张宁,黄卫.车牌识别算法的研究与实现[J].公路交通科技,2006,23(8):147-149. 被引量:20
  • 4Rabiner L R, Juang B H. Fundamentals of speech recognition [ M ]. Upper Saddle River, NJ : Prentice hall, 1993.
  • 5Gandhiraj R, Sathidevi P S. Auditory-based wavelet packet filterbank for speech recognition using neural network [ A ]//Proc Int Conf Adv Comput Commun, ADCOM [ C ] Institute of Electrical and Electronics Engineers Inc,2007: 666-671.
  • 6Mohammad I, Shah R S, Saad P D. Improving speaker independent speech recognition process using speech recognition engine[A]//Proc Int Conf Artif Intell,ICAI Proc Int Conf Mach Learn ; Models, Technol Appl , MLMTA [ C ]. Las Vegas ,NV ,United states : CSREA Press ,2008:870-875.
  • 7Lee Chin H, Rabiner, Lawrence R. Directions in automatic speech recognition[ J]. NTT Review, 1995,7(2) : 19-29.
  • 8Lalith Kumar T, Kishore Kumar T, Soundar Rajan K. Speech recognition using neural networks [ A ]// Int Conf Signal Process Syst [ C ]. IEEE Computer Society,2009: 248 -252.
  • 9Manish S, Richard M. Speech recognition using subword neural tree network models and multiple classifier fusion [ A ]// ICASSP IEEE Int Conf Acoust Speech Signal Process Proc Proceedings [ C ]. N J, United States: IEEE, 1995 : 3323-3326.
  • 10Ronan F, Edward J. Combined speech enhancement and auditory modeling for robust distributed speech recognition [J]. Speech Communication,2008,50(10) :797-809.

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部