期刊文献+

城市典型地物反射波谱分辨率研究 被引量:1

Spectral Resolution of Urban Typical Object Reflectance
下载PDF
导出
摘要 基于城市典型地物反射波谱,采用相关系数聚类法寻找合适表达城市地物特征的波谱分辨率,得到25、50、100通道三种波谱分辨率;从信息量、可分性两个角度进行验证,表明25个通道划分方法保留了地物间的基本可分性,而后两种划分方法优于普通高光谱通道。研究为高光谱城市遥感数据降维提供了一种途径。 Based on the field reflectance spectra of urban typical objects, this study tries to find the fine spectral--resolution for detailed mapping of urban objects based on their spectral signal. Correlation coefficient matrix and clustering is applied to obtain potential spectral windows. Finally, the range from 400 to 900nm is divided to 25, 50 and 100 bands, three kinds of spectral resolution. Entropy evaluation and classification using neural network show that separation can be mostly guaranteed on new spectrum resampled by 25 bands. It is also find that the divisions of 50 and 100 bands are better than the usual high spectral bands. So it proves the bands--division method is rational. As a result, the division of 25 bands is suggested to reduce spectral dimension of hyperspectral urban remote sensing.
出处 《遥感信息》 CSCD 2008年第2期21-24,50,共5页 Remote Sensing Information
关键词 城市典型地物 反射波谱 波谱分辨率 urban typical targets reflectance spectrum spectral resolution
  • 相关文献

参考文献9

  • 1Martin Herold. Spectral resolution requirments for mapping urban areas[J]. Transactions on Geoscience and Remote Sensing,2003,41(9):1907-1919.
  • 2Martin Herold,Dar A. Roberts, Margaret E. Gardner, et al. Spectrometry for urban area remote sensing-development and analysis of a spectral library from 350nm to 2400nm[J]. Remote Sensing of Environment, 2004 (91) :034- 319.
  • 3Nirmal Keshava. Distance metrics and band selection in hyperspectral processing with applications to material identification and spectral libraries[J]. Transactions on Geoscience and Remote Sensing, 2004,42 (7) : 1552 - 1565.
  • 4Hongtao Du, Hairong Qi, XiaolingWang. Band selection using independent component analysis for hyperspectral image processing[J]. IEEE Applied Imagery Pattern Recognition Workshop,2003(10):93-98.
  • 5John C. Price. An approach for analysis of reflectance spectra[J]. Remote Sensing of Environment, 1998 (64) :316 - 330.
  • 6曹建农,李德仁,关泽群.用马尔科夫网对多光谱遥感图像进行波段最优融合[J].测绘学报,2005,34(1):46-52. 被引量:5
  • 7路威,余旭初,刘娟,杨国鹏.基于分布异常的高光谱遥感影像小目标检测算法[J].测绘学报,2006,35(1):40-45. 被引量:14
  • 8Christopher Small. A global analysis of urban reflectance[J]. International Journal of Remote Sensing, 2005,26 (4):661- 681.
  • 9章皖秋,徐丽华,李先华,过仲阳.地物波谱的自组织神经网络分类[J].遥感信息,2004,26(4):26-28. 被引量:3

二级参考文献12

  • 1苏理宏,李小文,梁顺林,王锦地.典型地物波谱库的数据体系与波谱模拟[J].地球信息科学,2002,4(4):7-15. 被引量:33
  • 2THAI B,HEALEY G.Invariant Subpixel Target Identification in Hyperspectral Imagery[R].Orlando:SPIE International Symposium on Aerospace/Defense Sensing Simulation and Controls,1999.
  • 3LANDGREBE D.Hyperspectral Image Data Analysis as a High Dimensional Signal Processing Problem[J].IEEE Signal Processing,2002,19(1):17-28.
  • 4MANOLAKIS D,SIRACUSA C,SHAW G.Hyperspectral Subpixel Target Detection Using the Linear Mixing Model[J].IEEE Transactions on Geoscience and Remote Sensing,2001,39(7):1 392-1 409.
  • 5FRIEDMAN J H,TUKEY J W.A Projection Pursuit Algorithm for Exploratory Data Analysis[J].IEEE Transactions on Computers,1974,23(9):881-890.
  • 6GEOFFREY G H.Multivariate Gaussian MRF for Multispectral Scene Segmentation and Anomaly Detection[J].IEEE Transactions on Geoscience and Remote Sensing,2000,38(3):1199-1211.
  • 7JONES M C,SIBSON R.What is Projection Pursuit?[J],Journal of the Royal Statistical Society,1987,150(A):1-36.
  • 8CHIANG S S,CHANG C I,GINSBERG I W.Unsupervised Target Detection in Hyperspectral Images Using Projection Pursuit[J].IEEE Transactions on Geoscience and Remote Sensing,2001,39(7):1 380-1 391.
  • 9骆剑承,周成虎,杨艳.基于径向基函数(RBF)映射理论的遥感影像分类模型研究[J].中国图象图形学报(A辑),2000,5(2):94-99. 被引量:27
  • 10刘兴起,张辉.吉兰泰盐湖典型地物波谱反射率特征及其遥感解译标志[J].湖泊科学,2000,12(3):263-268. 被引量:6

共引文献19

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部