期刊文献+

基于支持向量机的路基检测研究

Study on Roadbed Detection Based on Support Vector Machine
下载PDF
导出
摘要 提出采用支持向量机的方法对探地雷达检测的路基数据进行处理和分析,从而实现对路基病害识别的定量解释。使用该方法对现场采集到的探地雷达检测数据进行了处理和分析,结果表明,路基病害的识别准确度可以达到90%以上,证明支持向量机的方法在路基检测中具有较好的效果和较高的准确度。 This paper advances a method to use support vector machine (SVM) to process and analyze the roadbed detection data obtained by ground penetrating radar (GPR), so as to achieve the quantity interpretation of roadbed disease recognition. Some actual roadbed detection data obtained by GPR was processed and analyzed by this method, and the results indicated that the nicety degree of roadbed disease recognition was up to above 90%, proved that the SVM method can result in good effect and high accurate degree in roadbed detection.
出处 《矿业研究与开发》 CAS 北大核心 2008年第2期78-80,共3页 Mining Research and Development
基金 国家自然科学基金重大项目资助(50490271)
关键词 探地雷达 支持向量机 路基检测 Ground Penetrating Radar, Support Vector Machine, Detection of Roadbed
  • 相关文献

参考文献5

二级参考文献18

  • 1V.N. Vapnik. The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995.
  • 2V. Cherkassky, F. Mulier. Learning from Data: Concept,Theory and Method. NY: John Viley & Sons, 1997.
  • 3O. Chapelle, V. M. Vapnik. Model selection for support vector machines. In: Proc. the 12th Conf. Neural Information Processing Systems. Cambridge, MA: MIT Press, 1999.
  • 4O. Chapelle, V. N. Vapnik, O. Bousquet, et al. Choosing multiple parameters for support vector machines. Machine Learning, 2002, 46(1): 131~159.
  • 5N. Cristianini, J. Shawe-Taylor, J. Kandola, et al. On kernel target alignment. In: Proc. Neural Information Processing Systems. Cambridge, MA: MIT Press, 2002. 367~373.
  • 6K. Tsuda, G. Ratsch, S. Mika, et al. Learning to predict the leave-one-out error of kernel based classifiers. In: Proc. 2001Int'l Conf. Artificial Neural Networks-ICANN 2001. Berlin:Springer-Verlag, 2001.
  • 7杨成林.瑞雷波勘探[M].北京:地质出版社,1994..
  • 8Cristianini N, Shawe-Tayor J. An introduction to support vector machines and other kernel-based learning methods[ M]. Cambridge: Cambridge University Press,2000.
  • 9Vapnik V.Statistical learning theory[ M] .New York:John Wiley & Sons, 1998.
  • 10Vapnik V, Chapelle o. Bounds on error expectation for support vector machines [ J ]. Neural Computation, 2000, 12 (9):928-931.

共引文献126

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部