期刊文献+

混沌背景下基于神经网络的编码信号检测新方法

New method of coded signals detection based on neural network in chaos
下载PDF
导出
摘要 提出了一种混沌背景下的编码信号检测新方法。信号检测过程包含两个步骤:混沌信号的预测和检测判决。该方法利用非线性前馈神经网络进行混沌信号模型的创建,并采用13位巴克码作为编码信号。仿真结果表明,通过该方法进行编码信号检测可以得到较高的检测概率和较低的虚警概率,整体检测性能较高,并且对于不同信噪比的信号具有较强的鲁棒性。 The process of signal detection consists of two stages, preliminary detection of chaotic signals and detection decision making. In this way, models of chaotic signals were created in the form of non-linear feedforward neural networks, and 13-element Barker code was used as the coded signals. The experiment results show that the detection of coded signals by using this method has higher detection probability, lower false alarm probability and good performance of the whole detection. This method turns out to be very robust to signals with different SNR.
出处 《海军工程大学学报》 CAS 北大核心 2008年第2期96-100,104,共6页 Journal of Naval University of Engineering
关键词 信号分类 信号检测 神经网络 混沌建模 signal classification signal detection neural network chaotic modeling
  • 相关文献

参考文献6

二级参考文献38

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部