期刊文献+

基于贝叶斯理论的电容层析成像图像重建迭代算法 被引量:7

Iterative Image Reconstruction Algorithm Based on Bayesian Theorem for Electrical Capacitance Tomography
下载PDF
导出
摘要 提出了一种基于贝叶斯理论的电容层析成像(electrical capacitance tomography,ECT)图像重建算法。与现有的ECT图像代数重建算法不同,该算法将介质分布的先验信息和噪声信息等统计信息引入到ECT图像重建中。文中针对5种典型介质分布进行了数值仿真实验,结果表明该算法对于两相流中不同的介质分布均具有良好的适应性。迭代步数和先验概率的协方差取值对图像重建结果有较大影响。在迭代过程中,该算法所需的增益矩阵的更新不依赖于输入,因而可以离线预先计算,从而减小图像重建的计算压力,提高该算法重建速度。 This paper proposes an iterative image reconstruction algorithm based on Bayesian theorem for electrical capacitance tomography (ECT). In order to solve the inverse problem of ECT, statistical information, including the prior probability of the permittivity distribution and the noise inform- ation in the measurement data, is taken into account, which is different to the existing ECT image reconstruction algorithms. Simulations with regard to five typical permittivity distributions are investigated. The numerical results show the feasibility and efficiency of this iterative algorithm. The effects of iteration steps and the variance with the prior probability on the quality of image reconstruction are investigated. Since the gain matrix is independent on the input during the iteration, it is suggested that the gain matrix be calculated offiine in advance to accelerate the iteration procedure and improve the speed of the algorithm.
出处 《中国电机工程学报》 EI CSCD 北大核心 2008年第11期65-71,共7页 Proceedings of the CSEE
基金 国家自然科学基金项目(60532020 60204003)~~
关键词 电容层析成像 图像重建 贝叶斯理论 高斯分布 迭代算法 electrical reconstruction Bayesian iterative algorithm capacitance tomography image theorem Gaussian distribution iterative algorithm
  • 相关文献

参考文献17

  • 1Scott D M.Introduction to process tomography[C].Proceeding of Frontiers in Industrial Process Tomography I,Engineering Foundation,California,1995.
  • 2Beck M A,Dyakowski T,Williams R A.Process tomography-the state of the art[J].Meas.Control,1998,20(4):163-177.
  • 3Beck M S,Williams R A.Process tomography:a European innovation and its applications[J].Meas.Sci.Technol.,1996,7(3):215-224.
  • 4Yang W Q,Peng L.Image reconstruction algorithms for electrical capacitance tomography[J].Meas.Sci.Technol.,2003,14(1):1-13.
  • 5Xie C G,Huang S M,Hoyle B S,et al.Electrical capacitance tomography fur flow imaging system model for development of image reconstruction algorithms and design of primary sensors[J].IEEE Proc-G,1992,139(1):89-98.
  • 6Rust B W.Truncating the smgular value decomposition for ill-posed problems,NISTIR6 131[R].US:National Institute of Standards and Technology,US Dept.of Commerce,1998.
  • 7Hansen P C.The truncated SVD as a method for regularization[J].BIT Numerical Mathematics,1987,27(4):534-553.
  • 8Peng L H,Merkus H,Scarier B.Using regnlarization methods to do image reconstruction of electrical capacitance tomography[J].Particle & Particle Systems Characterization,2000,17(3):96-104.
  • 9Lionheart B.Reconstruction algorithms for permittivity and conducti Vity imaging[C].Proc.2rid World Congress on Industrial Process Tomography,Hannover,2001:4-11.
  • 10江鹏,彭黎辉,萧德云.Gaussian窗函数在电容成像图像重建中的应用[J].清华大学学报(自然科学版),2007,47(1):150-153. 被引量:4

二级参考文献16

  • 1王翠苹,李定凯,董国亚,吕子安.广义矢量模式匹配法在电容层析成像技术上的应用[J].中国电机工程学报,2004,24(8):219-223. 被引量:14
  • 2Xie C G, Huang S M, Hoyle B S et al. Electrical capacitance tomography for flow imaging: System model for development of image reconstruction algorithms and design of primary sensors[J]. IEEProceedings-G. 1992,139 (1): 89-97.
  • 3Yan H, Liu L J, Xu H et al. Image reconstruction in electrical capacitance tomography using multiple linear regression and regularization[J]. Meas. Sci. Technol. 2001, 12(1): 575-581.
  • 4Liu S, Wang H G, Jiang F et al. A new image reconstruction method for tomographic investigation of fluidized beds[J]. AIChE Journal,2002,48(8): 1631-1638.
  • 5Yang W Q, Spink D M, York T A. An image reconstruction algorithm based on Landweber iteration method for electrical capacitance tomography[J]. Meas. Sci. Technol, 1999, 10(11): 1065-1069.
  • 6Liu S, Fu L, Yang W Q et al. Prior-online iteration for image reconstruction with electrical capacitance tomography[J]. IEEProc.-Sci. Meas. Technol., 2004, 151(3): 195-200.
  • 7Piana M, Bertero M. Projected Landweber method and preconditioning [J]. Inverse Problems, 1997, 13(2): 441-463.
  • 8Strand O N. Theory and methods related to the singular-function expansion and Landweber's iteration for integral equations of the first kind[J]. SIAM J. Numer. Anal., 1974, 11(4): 798-825.
  • 9York T. Status of electrical tomography in industrial applications[J].Journal of Electronic Imaging. 2001,10(3): 608-619.
  • 10Beck M A,Dyakowski T,Williams R A.Process tomography-the state of the art[J].Meas Control,1998,20:163-177.

共引文献30

同被引文献83

引证文献7

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部