期刊文献+

数据流中基于事务链表组的频繁闭项集挖掘

Mining frequent close itemsets over data stream by transaction list group
下载PDF
导出
摘要 挖掘频繁项集是挖掘数据流的基本任务。许多近似算法能够对数据流进行频繁项集的挖掘,但不能有效控制内存资源消耗和挖掘运行时间。为了提高数据流挖掘的效率,通过挖掘数据流中的频繁闭项集来减少挖掘结果项集的数量,并借鉴Relim算法和Manku算法,引入事务链表组作为概要数据结构,提出了一种新的数据流频繁闭项集的挖掘算法。最后通过实验,证明了该算法的有效性。 Mining frequent itemsets is a basic task of the data stream mining. Recently many approximate algorithms can mine frequent itemsets over data stream. However, these algorithms still cannot efficiently reduce space and time cost. To improve the efficiency, mining frequent close itemsets over data stream is proposed to reduce the number of frequent itemsets. Referring to the algorithms of Relim and Manku, the transaction list group is imported as the synopsis data structure, and a new algorithm of mining frequent close itemsets is put forward. At the end, experiments are done to prove the efficiency of this algorithm.
出处 《计算机工程与设计》 CSCD 北大核心 2008年第8期1896-1899,共4页 Computer Engineering and Design
关键词 数据流 数据挖掘 频繁项集 频繁闭项集 事务链表组 data stream data mining frequent itemsets frequent close itemsets transaction list group
  • 相关文献

参考文献8

  • 1Manku G S,Motwani R.Approximate frequency counts over data streams [C]. Hongkong, China:Proceedings of the 28th International Conference on Very Large, Databases,2002:346,357.
  • 2Chang J H,Lee W S.Finding recem frequent itemsets adaptively over online data streams [C]. Proceedings of KDD. New York: ACM Press,2003:487-492.
  • 3Giannella C,Han J,Pei J,et al.Mining frequent patterns in data streams at multiple time granularities[C].Next Generation Data Mining Menlo AAAI/MIT,2003:191-212.
  • 4Borgelt C.Keeping things simple:Finding frequent itemsets by recursive elimination[C]. Chicago,Illinois:Proc Workshop Open Source Data Mining Software,2005:66-70.
  • 5Han J,Pei J,Yin Y.Mining frequent patterns without candidate generation[C].Proc 2000 ACM-SIGMOD Int Conf Management of Data.New York:ACM Press,2000:1-12.
  • 6Pei J,Han J,Lu H,et al.H-Mine:Hyper-structure mining of frequent patterns in large databases [C]. San Jose,CA:Proc 2001 Int Conf Data Mining (ICDM'01 ),2001:441-448.
  • 7Borgelt C. Efficiem Implementations of Apriori and Eclat [C]. Aachen,Germany:Proc 1st IEEE ICDM Workshop on Frequent ItemSet Mining Implementations (FIMI 2003, Melbourne, FL), CEUR Workshop Proceedings 90,2003.
  • 8Borgelt C. Recursion pruning for the Apriori algorithm [C]. Aachen,Germany:Proc 2nd IEEE ICDM Workshop on Frequent Item Set Mining Implementations(FIMI 2004,Brighton,United Kingdom),CEUR Workshop Proceedings 126,2004.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部