摘要
A new robust electronic image stabilization system is presented, which involves feature-point, tracking based global motion estimation and Kalman filtering based motion compensation. First, global motion is estimated from the local motions of selected feature points. Considering the local moving objects or the inevitable mismatch, the matching validation, based on the stable relative distance between the points set is proposed, thus maintaining high accuracy and robustness. Next, the global motion parameters are accumulated for correction by Kalman filteration. The experimental result illustrates that the proposed system is effective to stabilize translational, rotational, and zooming jitter and robust to local motions.
A new robust electronic image stabilization system is presented, which involves feature-point, tracking based global motion estimation and Kalman filtering based motion compensation. First, global motion is estimated from the local motions of selected feature points. Considering the local moving objects or the inevitable mismatch, the matching validation, based on the stable relative distance between the points set is proposed, thus maintaining high accuracy and robustness. Next, the global motion parameters are accumulated for correction by Kalman filteration. The experimental result illustrates that the proposed system is effective to stabilize translational, rotational, and zooming jitter and robust to local motions.
基金
the National Natural Science Foundation (60572152) of China and Science Foundation ofShaanxi Province (2005F26)