期刊文献+

New recursive algorithm for matrix inversion 被引量:4

New recursive algorithm for matrix inversion
下载PDF
导出
摘要 To reduce the computational complexity of matrix inversion, which is the majority of processing in many practical applications, two numerically efficient recursive algorithms (called algorithms I and II, respectively) are presented. Algorithm I is used to calculate the inverse of such a matrix, whose leading principal minors are all nonzero. Algorithm II, whereby, the inverse of an arbitrary nonsingular matrix can be evaluated is derived via improving the algorithm I. The implementation, for algorithm II or I, involves matrix-vector multiplications and vector outer products. These operations are computationally fast and highly parallelizable. MATLAB simulations show that both recursive algorithms are valid. To reduce the computational complexity of matrix inversion, which is the majority of processing in many practical applications, two numerically efficient recursive algorithms (called algorithms I and II, respectively) are presented. Algorithm I is used to calculate the inverse of such a matrix, whose leading principal minors are all nonzero. Algorithm II, whereby, the inverse of an arbitrary nonsingular matrix can be evaluated is derived via improving the algorithm I. The implementation, for algorithm II or I, involves matrix-vector multiplications and vector outer products. These operations are computationally fast and highly parallelizable. MATLAB simulations show that both recursive algorithms are valid.
出处 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第2期381-384,共4页 系统工程与电子技术(英文版)
关键词 recursive algorithm matrix inversion matrix-vector product leading principal minor (LPM). recursive algorithm, matrix inversion, matrix-vector product, leading principal minor (LPM).
  • 相关文献

参考文献10

  • 1Jin Y, Friedlander B. Reduced-rank adaptive detection of distributed sources using subarrays. IEEE Trans. on Signal Processing, 2005, 53(1): 13-25.
  • 2Peckham C D, Haimovich A M, Ayoub T F, et al. Reducedrank STAP performance analysis. IEEE Trans. on Aerospace and Electronic Systems, 2000, 36(2): 664-676.
  • 3Sarestoniemi M, Matsumoto T, Kansanen K. Core matrix inversion techniques for SC/MMSE MIMO turbo equalization. Vehicular Technology Conference, 2004, 2004, 1: 394-398.
  • 4Brennan L, Mallett J, Reed I. Adaptive arrays in airborne MTI radar[J]. IEEE Trans. on Antennas and Propagation, 1976, 24(5): 607-615.
  • 5Kumar R. A fast algorithm for solving a toeplitz system of equations. IEEE Trans. on Acoust, Speech, Signal Processing, 1985, 33(1): 254-267.
  • 6Alexander S T, Ghirnikar A L. A method for recursive least squares filtering based upon an inverse QR decomposition. IEEE Trans. on Signal Processing, 1993, 41(1): 20-30.
  • 7Asif A, Moura J M F. Block matrices with L-block-banded inverse: inversion algorithms. IEEE Trans. on Signal Processing, 2005, 53(2): 630-642.
  • 8Zhang Xianda. Matrix analysis and applications. Beijing: Press of tsinghua, 2004: 93.
  • 9Xiong Jun, Liao Guisheng. Recursive algorithm of adaptive weight extraction of space-time signal processing for airborne radars. Proc. of, Radar, 1996: 86-90.
  • 10Takashi Yahagi. Fast algorithms and parallel signal processing. Beijing: Press of Science, 2003: 203.

同被引文献15

  • 1廖桂生,保铮,张玉洪.机载雷达时-空二维部分联合自适应处理[J].电子科学学刊,1993,15(6):575-580. 被引量:31
  • 2李黎,朱光喜,肖啸,刘建.基于置换QR分解的V-BLAST天线子集选择[J].通信学报,2006,27(9):21-26. 被引量:6
  • 3Cao Jianshu Wang Xuegang.Diagonally loaded SMI algorithm based on inverse matrix recursion[J].Journal of Systems Engineering and Electronics,2007,18(1):160-163. 被引量:7
  • 4Alamouti S M. A simple diversity technique for wireless eomrnunications[J]. IEEE Journal on Select Areas in Communications, 1998, 16 (8) :1451 - 1458.
  • 5Foschini G J. Layered space-time architecture for wireless communication in a fading environment when usingmulti-element antennas[J]. Bell Labs Technical Journal, 1996,1(2) :41 - 59.
  • 6Dai L, Sfar S, Letaief K B. A quasi-orthogonal group space-time architecture to achieve a better diversity-multiplexing tradeoff [J]. IEEE Trans. on Wireless Communications, 2007,6 (4) : 1295 - 1307.
  • 7Molish A F, WIN M Z. MIMO systems with antenna selection[J]. IEEE Microwave Magazine, 2004, 5(1) :46 - 56. 2004.
  • 8Golden G D, Foschini C J, Valenzhela R A. Detection algorithm and initial laboratory results using V-BLAST space-time communication architecture[J]. IEE Electronics Letters, 1999, 35(1): 14 - 16.
  • 9Dai L, Sfar S, Letaief K B. An efficient detector for combined space-time coding and layered processing[J]. IEEE Trans. on Communications, 2005, 53(9) :1438 - 1442.
  • 10Gorokhov A, Gore D, Paulraj A. Receive antenna selection for MIMO spatial multiplexing: theory and algorithms[J]. IEEE Trans. on Signal Process, 2003, 51(11) : 2796 - 2807.

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部